|
|
|
|
|
import glob
|
|
import logging
|
|
import math
|
|
import os
|
|
import platform
|
|
import random
|
|
import re
|
|
import subprocess
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import pandas as pd
|
|
import torch
|
|
import torchvision
|
|
import yaml
|
|
|
|
from utils.google_utils import gsutil_getsize
|
|
from utils.metrics import fitness
|
|
from utils.torch_utils import init_torch_seeds
|
|
|
|
|
|
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
|
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})
|
|
pd.options.display.max_columns = 10
|
|
cv2.setNumThreads(0)
|
|
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8))
|
|
|
|
|
|
def set_logging(rank=-1):
|
|
logging.basicConfig(
|
|
format="%(message)s",
|
|
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
|
|
|
|
|
def init_seeds(seed=0):
|
|
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
init_torch_seeds(seed)
|
|
|
|
|
|
def get_latest_run(search_dir='.'):
|
|
|
|
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
|
return max(last_list, key=os.path.getctime) if last_list else ''
|
|
|
|
|
|
def isdocker():
|
|
|
|
return Path('/workspace').exists()
|
|
|
|
|
|
def emojis(str=''):
|
|
|
|
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
|
|
|
|
|
def check_online():
|
|
|
|
import socket
|
|
try:
|
|
socket.create_connection(("1.1.1.1", 443), 5)
|
|
return True
|
|
except OSError:
|
|
return False
|
|
|
|
|
|
def check_git_status():
|
|
|
|
print(colorstr('github: '), end='')
|
|
try:
|
|
assert Path('.git').exists(), 'skipping check (not a git repository)'
|
|
assert not isdocker(), 'skipping check (Docker image)'
|
|
assert check_online(), 'skipping check (offline)'
|
|
|
|
cmd = 'git fetch && git config --get remote.origin.url'
|
|
url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git')
|
|
branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip()
|
|
n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True))
|
|
if n > 0:
|
|
s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
|
|
f"Use 'git pull' to update or 'git clone {url}' to download latest."
|
|
else:
|
|
s = f'up to date with {url} ✅'
|
|
print(emojis(s))
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
def check_requirements(requirements='requirements.txt', exclude=()):
|
|
|
|
import pkg_resources as pkg
|
|
prefix = colorstr('red', 'bold', 'requirements:')
|
|
if isinstance(requirements, (str, Path)):
|
|
file = Path(requirements)
|
|
if not file.exists():
|
|
print(f"{prefix} {file.resolve()} not found, check failed.")
|
|
return
|
|
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
|
|
else:
|
|
requirements = [x for x in requirements if x not in exclude]
|
|
|
|
n = 0
|
|
for r in requirements:
|
|
try:
|
|
pkg.require(r)
|
|
except Exception as e:
|
|
n += 1
|
|
print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
|
|
print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
|
|
|
|
if n:
|
|
source = file.resolve() if 'file' in locals() else requirements
|
|
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
|
|
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
|
print(emojis(s))
|
|
|
|
|
|
def check_img_size(img_size, s=32):
|
|
|
|
new_size = make_divisible(img_size, int(s))
|
|
if new_size != img_size:
|
|
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
|
|
return new_size
|
|
|
|
|
|
def check_imshow():
|
|
|
|
try:
|
|
assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
|
|
cv2.imshow('test', np.zeros((1, 1, 3)))
|
|
cv2.waitKey(1)
|
|
cv2.destroyAllWindows()
|
|
cv2.waitKey(1)
|
|
return True
|
|
except Exception as e:
|
|
print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
|
|
return False
|
|
|
|
|
|
def check_file(file):
|
|
|
|
if Path(file).is_file() or file == '':
|
|
return file
|
|
else:
|
|
files = glob.glob('./**/' + file, recursive=True)
|
|
assert len(files), f'File Not Found: {file}'
|
|
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}"
|
|
return files[0]
|
|
|
|
|
|
def check_dataset(dict):
|
|
|
|
val, s = dict.get('val'), dict.get('download')
|
|
if val and len(val):
|
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]
|
|
if not all(x.exists() for x in val):
|
|
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
|
|
if s and len(s):
|
|
print('Downloading %s ...' % s)
|
|
if s.startswith('http') and s.endswith('.zip'):
|
|
f = Path(s).name
|
|
torch.hub.download_url_to_file(s, f)
|
|
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f))
|
|
else:
|
|
r = os.system(s)
|
|
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure'))
|
|
else:
|
|
raise Exception('Dataset not found.')
|
|
|
|
|
|
def make_divisible(x, divisor):
|
|
|
|
return math.ceil(x / divisor) * divisor
|
|
|
|
|
|
def clean_str(s):
|
|
|
|
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
|
|
|
|
|
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
|
|
|
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
|
|
|
|
|
def colorstr(*input):
|
|
|
|
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0])
|
|
colors = {'black': '\033[30m',
|
|
'red': '\033[31m',
|
|
'green': '\033[32m',
|
|
'yellow': '\033[33m',
|
|
'blue': '\033[34m',
|
|
'magenta': '\033[35m',
|
|
'cyan': '\033[36m',
|
|
'white': '\033[37m',
|
|
'bright_black': '\033[90m',
|
|
'bright_red': '\033[91m',
|
|
'bright_green': '\033[92m',
|
|
'bright_yellow': '\033[93m',
|
|
'bright_blue': '\033[94m',
|
|
'bright_magenta': '\033[95m',
|
|
'bright_cyan': '\033[96m',
|
|
'bright_white': '\033[97m',
|
|
'end': '\033[0m',
|
|
'bold': '\033[1m',
|
|
'underline': '\033[4m'}
|
|
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
|
|
|
|
|
def labels_to_class_weights(labels, nc=80):
|
|
|
|
if labels[0] is None:
|
|
return torch.Tensor()
|
|
|
|
labels = np.concatenate(labels, 0)
|
|
classes = labels[:, 0].astype(np.int32)
|
|
weights = np.bincount(classes, minlength=nc)
|
|
|
|
|
|
|
|
|
|
|
|
weights[weights == 0] = 1
|
|
weights = 1 / weights
|
|
weights /= weights.sum()
|
|
return torch.from_numpy(weights)
|
|
|
|
|
|
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
|
|
|
class_counts = np.array([np.bincount(x[:, 0].astype(np.int32), minlength=nc) for x in labels])
|
|
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
|
|
|
|
return image_weights
|
|
|
|
|
|
def coco80_to_coco91_class():
|
|
|
|
|
|
|
|
|
|
|
|
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
|
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
|
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
|
return x
|
|
|
|
|
|
def xyxy2xywh(x):
|
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
|
|
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
|
|
y[:, 2] = x[:, 2] - x[:, 0]
|
|
y[:, 3] = x[:, 3] - x[:, 1]
|
|
return y
|
|
|
|
|
|
def xywh2xyxy(x):
|
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
y[:, 0] = x[:, 0] - x[:, 2] / 2
|
|
y[:, 1] = x[:, 1] - x[:, 3] / 2
|
|
y[:, 2] = x[:, 0] + x[:, 2] / 2
|
|
y[:, 3] = x[:, 1] + x[:, 3] / 2
|
|
return y
|
|
|
|
|
|
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw
|
|
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh
|
|
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw
|
|
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh
|
|
return y
|
|
|
|
|
|
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
|
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
y[:, 0] = w * x[:, 0] + padw
|
|
y[:, 1] = h * x[:, 1] + padh
|
|
return y
|
|
|
|
|
|
def segment2box(segment, width=640, height=640):
|
|
|
|
x, y = segment.T
|
|
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
|
x, y, = x[inside], y[inside]
|
|
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4))
|
|
|
|
|
|
def segments2boxes(segments):
|
|
|
|
boxes = []
|
|
for s in segments:
|
|
x, y = s.T
|
|
boxes.append([x.min(), y.min(), x.max(), y.max()])
|
|
return xyxy2xywh(np.array(boxes))
|
|
|
|
|
|
def resample_segments(segments, n=1000):
|
|
|
|
for i, s in enumerate(segments):
|
|
s = np.concatenate((s, s[0:1, :]), axis=0)
|
|
x = np.linspace(0, len(s) - 1, n)
|
|
xp = np.arange(len(s))
|
|
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T
|
|
return segments
|
|
|
|
|
|
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
|
|
|
if ratio_pad is None:
|
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])
|
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2
|
|
else:
|
|
gain = ratio_pad[0][0]
|
|
pad = ratio_pad[1]
|
|
|
|
coords[:, [0, 2]] -= pad[0]
|
|
coords[:, [1, 3]] -= pad[1]
|
|
coords[:, :4] /= gain
|
|
clip_coords(coords, img0_shape)
|
|
return coords
|
|
|
|
|
|
def clip_coords(boxes, img_shape):
|
|
|
|
boxes[:, 0].clamp_(0, img_shape[1])
|
|
boxes[:, 1].clamp_(0, img_shape[0])
|
|
boxes[:, 2].clamp_(0, img_shape[1])
|
|
boxes[:, 3].clamp_(0, img_shape[0])
|
|
|
|
|
|
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
|
|
|
box2 = box2.T
|
|
|
|
|
|
if x1y1x2y2:
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
|
else:
|
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
|
|
|
|
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
|
|
|
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
|
union = w1 * h1 + w2 * h2 - inter + eps
|
|
|
|
iou = inter / union
|
|
|
|
if GIoU or DIoU or CIoU:
|
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)
|
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)
|
|
if CIoU or DIoU:
|
|
c2 = cw ** 2 + ch ** 2 + eps
|
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
|
|
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4
|
|
if DIoU:
|
|
return iou - rho2 / c2
|
|
elif CIoU:
|
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
|
|
with torch.no_grad():
|
|
alpha = v / (v - iou + (1 + eps))
|
|
return iou - (rho2 / c2 + v * alpha)
|
|
else:
|
|
c_area = cw * ch + eps
|
|
return iou - (c_area - union) / c_area
|
|
else:
|
|
return iou
|
|
|
|
|
|
|
|
|
|
def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
|
|
|
|
box2 = box2.T
|
|
|
|
|
|
if x1y1x2y2:
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
|
else:
|
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
|
|
|
|
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
|
|
|
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
|
union = w1 * h1 + w2 * h2 - inter + eps
|
|
|
|
|
|
|
|
iou = torch.pow(inter/union + eps, alpha)
|
|
|
|
if GIoU or DIoU or CIoU:
|
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)
|
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)
|
|
if CIoU or DIoU:
|
|
c2 = (cw ** 2 + ch ** 2) ** alpha + eps
|
|
rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
|
|
rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
|
|
rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha
|
|
if DIoU:
|
|
return iou - rho2 / c2
|
|
elif CIoU:
|
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
|
with torch.no_grad():
|
|
alpha_ciou = v / ((1 + eps) - inter / union + v)
|
|
|
|
return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))
|
|
else:
|
|
|
|
|
|
c_area = torch.max(cw * ch + eps, union)
|
|
return iou - torch.pow((c_area - union) / c_area + eps, alpha)
|
|
else:
|
|
return iou
|
|
|
|
|
|
def box_iou(box1, box2):
|
|
|
|
"""
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
Arguments:
|
|
box1 (Tensor[N, 4])
|
|
box2 (Tensor[M, 4])
|
|
Returns:
|
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
|
IoU values for every element in boxes1 and boxes2
|
|
"""
|
|
|
|
def box_area(box):
|
|
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
area1 = box_area(box1.T)
|
|
area2 = box_area(box2.T)
|
|
|
|
|
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
|
return inter / (area1[:, None] + area2 - inter)
|
|
|
|
|
|
def wh_iou(wh1, wh2):
|
|
|
|
wh1 = wh1[:, None]
|
|
wh2 = wh2[None]
|
|
inter = torch.min(wh1, wh2).prod(2)
|
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter)
|
|
|
|
|
|
def box_giou(box1, box2):
|
|
"""
|
|
Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
|
|
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
|
|
``0 <= x1 < x2`` and ``0 <= y1 < y2``.
|
|
Args:
|
|
boxes1 (Tensor[N, 4]): first set of boxes
|
|
boxes2 (Tensor[M, 4]): second set of boxes
|
|
Returns:
|
|
Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
|
|
for every element in boxes1 and boxes2
|
|
"""
|
|
|
|
def box_area(box):
|
|
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
area1 = box_area(box1.T)
|
|
area2 = box_area(box2.T)
|
|
|
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
|
union = (area1[:, None] + area2 - inter)
|
|
|
|
iou = inter / union
|
|
|
|
lti = torch.min(box1[:, None, :2], box2[:, :2])
|
|
rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
|
|
|
|
whi = (rbi - lti).clamp(min=0)
|
|
areai = whi[:, :, 0] * whi[:, :, 1]
|
|
|
|
return iou - (areai - union) / areai
|
|
|
|
|
|
def box_ciou(box1, box2, eps: float = 1e-7):
|
|
"""
|
|
Return complete intersection-over-union (Jaccard index) between two sets of boxes.
|
|
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
|
|
``0 <= x1 < x2`` and ``0 <= y1 < y2``.
|
|
Args:
|
|
boxes1 (Tensor[N, 4]): first set of boxes
|
|
boxes2 (Tensor[M, 4]): second set of boxes
|
|
eps (float, optional): small number to prevent division by zero. Default: 1e-7
|
|
Returns:
|
|
Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
|
|
for every element in boxes1 and boxes2
|
|
"""
|
|
|
|
def box_area(box):
|
|
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
area1 = box_area(box1.T)
|
|
area2 = box_area(box2.T)
|
|
|
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
|
union = (area1[:, None] + area2 - inter)
|
|
|
|
iou = inter / union
|
|
|
|
lti = torch.min(box1[:, None, :2], box2[:, :2])
|
|
rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
|
|
|
|
whi = (rbi - lti).clamp(min=0)
|
|
diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
|
|
|
|
|
|
x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
|
|
y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
|
|
x_g = (box2[:, 0] + box2[:, 2]) / 2
|
|
y_g = (box2[:, 1] + box2[:, 3]) / 2
|
|
|
|
centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
|
|
|
|
w_pred = box1[:, None, 2] - box1[:, None, 0]
|
|
h_pred = box1[:, None, 3] - box1[:, None, 1]
|
|
|
|
w_gt = box2[:, 2] - box2[:, 0]
|
|
h_gt = box2[:, 3] - box2[:, 1]
|
|
|
|
v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
|
|
with torch.no_grad():
|
|
alpha = v / (1 - iou + v + eps)
|
|
return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
|
|
|
|
|
|
def box_diou(box1, box2, eps: float = 1e-7):
|
|
"""
|
|
Return distance intersection-over-union (Jaccard index) between two sets of boxes.
|
|
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
|
|
``0 <= x1 < x2`` and ``0 <= y1 < y2``.
|
|
Args:
|
|
boxes1 (Tensor[N, 4]): first set of boxes
|
|
boxes2 (Tensor[M, 4]): second set of boxes
|
|
eps (float, optional): small number to prevent division by zero. Default: 1e-7
|
|
Returns:
|
|
Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
|
|
for every element in boxes1 and boxes2
|
|
"""
|
|
|
|
def box_area(box):
|
|
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
area1 = box_area(box1.T)
|
|
area2 = box_area(box2.T)
|
|
|
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
|
union = (area1[:, None] + area2 - inter)
|
|
|
|
iou = inter / union
|
|
|
|
lti = torch.min(box1[:, None, :2], box2[:, :2])
|
|
rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
|
|
|
|
whi = (rbi - lti).clamp(min=0)
|
|
diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
|
|
|
|
|
|
x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
|
|
y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
|
|
x_g = (box2[:, 0] + box2[:, 2]) / 2
|
|
y_g = (box2[:, 1] + box2[:, 3]) / 2
|
|
|
|
centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
|
|
|
|
|
|
|
|
return iou - (centers_distance_squared / diagonal_distance_squared)
|
|
|
|
|
|
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
|
|
labels=()):
|
|
"""Runs Non-Maximum Suppression (NMS) on inference results
|
|
|
|
Returns:
|
|
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
|
"""
|
|
|
|
nc = prediction.shape[2] - 5
|
|
xc = prediction[..., 4] > conf_thres
|
|
|
|
|
|
min_wh, max_wh = 2, 4096
|
|
max_det = 300
|
|
max_nms = 30000
|
|
time_limit = 10.0
|
|
redundant = True
|
|
multi_label &= nc > 1
|
|
merge = False
|
|
|
|
t = time.time()
|
|
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
|
for xi, x in enumerate(prediction):
|
|
|
|
|
|
x = x[xc[xi]]
|
|
|
|
|
|
if labels and len(labels[xi]):
|
|
l = labels[xi]
|
|
v = torch.zeros((len(l), nc + 5), device=x.device)
|
|
v[:, :4] = l[:, 1:5]
|
|
v[:, 4] = 1.0
|
|
v[range(len(l)), l[:, 0].long() + 5] = 1.0
|
|
x = torch.cat((x, v), 0)
|
|
|
|
|
|
if not x.shape[0]:
|
|
continue
|
|
|
|
|
|
if nc == 1:
|
|
x[:, 5:] = x[:, 4:5]
|
|
|
|
else:
|
|
x[:, 5:] *= x[:, 4:5]
|
|
|
|
|
|
box = xywh2xyxy(x[:, :4])
|
|
|
|
|
|
if multi_label:
|
|
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
|
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
|
else:
|
|
conf, j = x[:, 5:].max(1, keepdim=True)
|
|
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
|
|
|
|
|
if classes is not None:
|
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n = x.shape[0]
|
|
if not n:
|
|
continue
|
|
elif n > max_nms:
|
|
x = x[x[:, 4].argsort(descending=True)[:max_nms]]
|
|
|
|
|
|
c = x[:, 5:6] * (0 if agnostic else max_wh)
|
|
boxes, scores = x[:, :4] + c, x[:, 4]
|
|
i = torchvision.ops.nms(boxes, scores, iou_thres)
|
|
if i.shape[0] > max_det:
|
|
i = i[:max_det]
|
|
if merge and (1 < n < 3E3):
|
|
|
|
iou = box_iou(boxes[i], boxes) > iou_thres
|
|
weights = iou * scores[None]
|
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)
|
|
if redundant:
|
|
i = i[iou.sum(1) > 1]
|
|
|
|
output[xi] = x[i]
|
|
if (time.time() - t) > time_limit:
|
|
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
|
break
|
|
|
|
return output
|
|
|
|
|
|
def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
|
|
labels=(), kpt_label=False, nc=None, nkpt=None):
|
|
"""Runs Non-Maximum Suppression (NMS) on inference results
|
|
|
|
Returns:
|
|
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
|
"""
|
|
if nc is None:
|
|
nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56
|
|
xc = prediction[..., 4] > conf_thres
|
|
|
|
|
|
min_wh, max_wh = 2, 4096
|
|
max_det = 300
|
|
max_nms = 30000
|
|
time_limit = 10.0
|
|
redundant = True
|
|
multi_label &= nc > 1
|
|
merge = False
|
|
|
|
t = time.time()
|
|
output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0]
|
|
for xi, x in enumerate(prediction):
|
|
|
|
|
|
x = x[xc[xi]]
|
|
|
|
|
|
if labels and len(labels[xi]):
|
|
l = labels[xi]
|
|
v = torch.zeros((len(l), nc + 5), device=x.device)
|
|
v[:, :4] = l[:, 1:5]
|
|
v[:, 4] = 1.0
|
|
v[range(len(l)), l[:, 0].long() + 5] = 1.0
|
|
x = torch.cat((x, v), 0)
|
|
|
|
|
|
if not x.shape[0]:
|
|
continue
|
|
|
|
|
|
x[:, 5:5+nc] *= x[:, 4:5]
|
|
|
|
|
|
box = xywh2xyxy(x[:, :4])
|
|
|
|
|
|
if multi_label:
|
|
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
|
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
|
else:
|
|
if not kpt_label:
|
|
conf, j = x[:, 5:].max(1, keepdim=True)
|
|
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
|
else:
|
|
kpts = x[:, 6:]
|
|
conf, j = x[:, 5:6].max(1, keepdim=True)
|
|
x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres]
|
|
|
|
|
|
|
|
if classes is not None:
|
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n = x.shape[0]
|
|
if not n:
|
|
continue
|
|
elif n > max_nms:
|
|
x = x[x[:, 4].argsort(descending=True)[:max_nms]]
|
|
|
|
|
|
c = x[:, 5:6] * (0 if agnostic else max_wh)
|
|
boxes, scores = x[:, :4] + c, x[:, 4]
|
|
i = torchvision.ops.nms(boxes, scores, iou_thres)
|
|
if i.shape[0] > max_det:
|
|
i = i[:max_det]
|
|
if merge and (1 < n < 3E3):
|
|
|
|
iou = box_iou(boxes[i], boxes) > iou_thres
|
|
weights = iou * scores[None]
|
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)
|
|
if redundant:
|
|
i = i[iou.sum(1) > 1]
|
|
|
|
output[xi] = x[i]
|
|
if (time.time() - t) > time_limit:
|
|
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
|
break
|
|
|
|
return output
|
|
|
|
|
|
def strip_optimizer(f='best.pt', s=''):
|
|
|
|
x = torch.load(f, map_location=torch.device('cpu'))
|
|
if x.get('ema'):
|
|
x['model'] = x['ema']
|
|
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates':
|
|
x[k] = None
|
|
x['epoch'] = -1
|
|
x['model'].half()
|
|
for p in x['model'].parameters():
|
|
p.requires_grad = False
|
|
torch.save(x, s or f)
|
|
mb = os.path.getsize(s or f) / 1E6
|
|
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
|
|
|
|
|
|
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
|
|
|
a = '%10s' * len(hyp) % tuple(hyp.keys())
|
|
b = '%10.3g' * len(hyp) % tuple(hyp.values())
|
|
c = '%10.4g' * len(results) % results
|
|
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
|
|
|
|
if bucket:
|
|
url = 'gs://%s/evolve.txt' % bucket
|
|
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
|
|
os.system('gsutil cp %s .' % url)
|
|
|
|
with open('evolve.txt', 'a') as f:
|
|
f.write(c + b + '\n')
|
|
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)
|
|
x = x[np.argsort(-fitness(x))]
|
|
np.savetxt('evolve.txt', x, '%10.3g')
|
|
|
|
|
|
for i, k in enumerate(hyp.keys()):
|
|
hyp[k] = float(x[0, i + 7])
|
|
with open(yaml_file, 'w') as f:
|
|
results = tuple(x[0, :7])
|
|
c = '%10.4g' * len(results) % results
|
|
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
|
|
yaml.dump(hyp, f, sort_keys=False)
|
|
|
|
if bucket:
|
|
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket))
|
|
|
|
|
|
def apply_classifier(x, model, img, im0):
|
|
|
|
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
|
for i, d in enumerate(x):
|
|
if d is not None and len(d):
|
|
d = d.clone()
|
|
|
|
|
|
b = xyxy2xywh(d[:, :4])
|
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)
|
|
b[:, 2:] = b[:, 2:] * 1.3 + 30
|
|
d[:, :4] = xywh2xyxy(b).long()
|
|
|
|
|
|
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
|
|
|
|
|
pred_cls1 = d[:, 5].long()
|
|
ims = []
|
|
for j, a in enumerate(d):
|
|
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
|
im = cv2.resize(cutout, (224, 224))
|
|
|
|
|
|
im = im[:, :, ::-1].transpose(2, 0, 1)
|
|
im = np.ascontiguousarray(im, dtype=np.float32)
|
|
im /= 255.0
|
|
ims.append(im)
|
|
|
|
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)
|
|
x[i] = x[i][pred_cls1 == pred_cls2]
|
|
|
|
return x
|
|
|
|
|
|
def increment_path(path, exist_ok=True, sep=''):
|
|
|
|
path = Path(path)
|
|
if (path.exists() and exist_ok) or (not path.exists()):
|
|
return str(path)
|
|
else:
|
|
dirs = glob.glob(f"{path}{sep}*")
|
|
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
|
|
i = [int(m.groups()[0]) for m in matches if m]
|
|
n = max(i) + 1 if i else 2
|
|
return f"{path}{sep}{n}"
|
|
|