from diffusers import StableDiffusionPipeline import torch from flask import Flask, request, jsonify app = Flask(__name__) # Load the model model_id = "kothariyashhh/GenAi-Texttoimage" device = "cuda" if torch.cuda.is_available() else "cpu" # Use float32 if running on CPU torch_dtype = torch.float16 if device == "cuda" else torch.float32 pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) pipeline.to(device) @app.route("/generate", methods=["POST"]) def generate_image(): data = request.get_json() prompt = data.get("prompt", "A scenic landscape") image = pipeline(prompt).images[0] image_path = "generated_image.png" image.save(image_path) return jsonify({"image_url": image_path}) if __name__ == "__main__": app.run(host="0.0.0.0", port=7860)