harmionestark commited on
Commit
d7ce378
Β·
verified Β·
1 Parent(s): 01cec1b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -10
app.py CHANGED
@@ -9,10 +9,8 @@ import torch
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
  model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
  pipe = pipe.to(device)
@@ -20,7 +18,6 @@ pipe = pipe.to(device)
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
-
24
  # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
  prompt,
@@ -50,7 +47,6 @@ def infer(
50
 
51
  return image, seed
52
 
53
-
54
  examples = [
55
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
  "An astronaut riding a green horse",
@@ -105,7 +101,7 @@ with gr.Blocks(css=css) as demo:
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
 
111
  height = gr.Slider(
@@ -113,7 +109,7 @@ with gr.Blocks(css=css) as demo:
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
 
119
  with gr.Row():
@@ -122,7 +118,7 @@ with gr.Blocks(css=css) as demo:
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
 
128
  num_inference_steps = gr.Slider(
@@ -130,7 +126,7 @@ with gr.Blocks(css=css) as demo:
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
  gr.Examples(examples=examples, inputs=[prompt])
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
  model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
+ # Force model to use float32 to avoid dtype mismatch
13
+ torch_dtype = torch.float32
 
 
14
 
15
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
16
  pipe = pipe.to(device)
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
20
 
 
21
  # @spaces.GPU #[uncomment to use ZeroGPU]
22
  def infer(
23
  prompt,
 
47
 
48
  return image, seed
49
 
 
50
  examples = [
51
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
52
  "An astronaut riding a green horse",
 
101
  minimum=256,
102
  maximum=MAX_IMAGE_SIZE,
103
  step=32,
104
+ value=1024,
105
  )
106
 
107
  height = gr.Slider(
 
109
  minimum=256,
110
  maximum=MAX_IMAGE_SIZE,
111
  step=32,
112
+ value=1024,
113
  )
114
 
115
  with gr.Row():
 
118
  minimum=0.0,
119
  maximum=10.0,
120
  step=0.1,
121
+ value=0.0,
122
  )
123
 
124
  num_inference_steps = gr.Slider(
 
126
  minimum=1,
127
  maximum=50,
128
  step=1,
129
+ value=2,
130
  )
131
 
132
  gr.Examples(examples=examples, inputs=[prompt])