Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,9 +16,9 @@ pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
|
| 16 |
|
| 17 |
# Explicitly convert submodules to float32 to prevent dtype mismatch
|
| 18 |
pipe.to(device)
|
| 19 |
-
pipe.text_encoder.to(dtype=torch.float32)
|
| 20 |
-
pipe.vae.to(dtype=torch.float32)
|
| 21 |
-
pipe.unet.to(dtype=torch.float32)
|
| 22 |
|
| 23 |
MAX_SEED = np.iinfo(np.int32).max
|
| 24 |
MAX_IMAGE_SIZE = 1024
|
|
@@ -38,7 +38,11 @@ def infer(
|
|
| 38 |
if randomize_seed:
|
| 39 |
seed = random.randint(0, MAX_SEED)
|
| 40 |
|
| 41 |
-
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
image = pipe(
|
| 44 |
prompt=prompt,
|
|
@@ -152,4 +156,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 152 |
)
|
| 153 |
|
| 154 |
if __name__ == "__main__":
|
| 155 |
-
demo.launch()
|
|
|
|
| 16 |
|
| 17 |
# Explicitly convert submodules to float32 to prevent dtype mismatch
|
| 18 |
pipe.to(device)
|
| 19 |
+
pipe.text_encoder.to(device, dtype=torch.float32)
|
| 20 |
+
pipe.vae.to(device, dtype=torch.float32)
|
| 21 |
+
pipe.unet.to(device, dtype=torch.float32)
|
| 22 |
|
| 23 |
MAX_SEED = np.iinfo(np.int32).max
|
| 24 |
MAX_IMAGE_SIZE = 1024
|
|
|
|
| 38 |
if randomize_seed:
|
| 39 |
seed = random.randint(0, MAX_SEED)
|
| 40 |
|
| 41 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 42 |
+
|
| 43 |
+
# Ensure text inputs are moved to the correct device and dtype
|
| 44 |
+
prompt = str(prompt) if prompt else ""
|
| 45 |
+
negative_prompt = str(negative_prompt) if negative_prompt else ""
|
| 46 |
|
| 47 |
image = pipe(
|
| 48 |
prompt=prompt,
|
|
|
|
| 156 |
)
|
| 157 |
|
| 158 |
if __name__ == "__main__":
|
| 159 |
+
demo.launch()
|