Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,175 +1,24 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
buffer.data = buffer.data.to(torch.float32)
|
28 |
-
|
29 |
-
force_float32(pipe.text_encoder)
|
30 |
-
force_float32(pipe.vae)
|
31 |
-
force_float32(pipe.unet)
|
32 |
-
|
33 |
-
MAX_SEED = np.iinfo(np.int32).max
|
34 |
-
MAX_IMAGE_SIZE = 1024
|
35 |
-
|
36 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
37 |
-
def infer(
|
38 |
-
prompt,
|
39 |
-
negative_prompt,
|
40 |
-
seed,
|
41 |
-
randomize_seed,
|
42 |
-
width,
|
43 |
-
height,
|
44 |
-
guidance_scale,
|
45 |
-
num_inference_steps,
|
46 |
-
progress=gr.Progress(track_tqdm=True),
|
47 |
-
):
|
48 |
-
if randomize_seed:
|
49 |
-
seed = random.randint(0, MAX_SEED)
|
50 |
-
|
51 |
-
generator = torch.Generator(device).manual_seed(int(seed))
|
52 |
-
|
53 |
-
# Ensure text inputs are strings
|
54 |
-
prompt = str(prompt) if prompt else ""
|
55 |
-
negative_prompt = str(negative_prompt) if negative_prompt else ""
|
56 |
-
|
57 |
-
# Ensure text input IDs are of type LongTensor
|
58 |
-
if isinstance(prompt, torch.Tensor):
|
59 |
-
prompt = prompt.to(torch.long).tolist()
|
60 |
-
if isinstance(negative_prompt, torch.Tensor):
|
61 |
-
negative_prompt = negative_prompt.to(torch.long).tolist()
|
62 |
-
|
63 |
-
image = pipe(
|
64 |
-
prompt=prompt,
|
65 |
-
negative_prompt=negative_prompt,
|
66 |
-
guidance_scale=float(guidance_scale),
|
67 |
-
num_inference_steps=int(num_inference_steps),
|
68 |
-
width=int(width),
|
69 |
-
height=int(height),
|
70 |
-
generator=generator,
|
71 |
-
).images[0]
|
72 |
-
|
73 |
-
return image, seed
|
74 |
-
|
75 |
-
examples = [
|
76 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
77 |
-
"An astronaut riding a green horse",
|
78 |
-
"A delicious ceviche cheesecake slice",
|
79 |
-
]
|
80 |
-
|
81 |
-
css = """
|
82 |
-
#col-container {
|
83 |
-
margin: 0 auto;
|
84 |
-
max-width: 640px;
|
85 |
-
}
|
86 |
-
"""
|
87 |
-
|
88 |
-
with gr.Blocks(css=css) as demo:
|
89 |
-
with gr.Column(elem_id="col-container"):
|
90 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
91 |
-
|
92 |
-
with gr.Row():
|
93 |
-
prompt = gr.Text(
|
94 |
-
label="Prompt",
|
95 |
-
show_label=False,
|
96 |
-
max_lines=1,
|
97 |
-
placeholder="Enter your prompt",
|
98 |
-
container=False,
|
99 |
-
)
|
100 |
-
|
101 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
102 |
-
|
103 |
-
result = gr.Image(label="Result", show_label=False)
|
104 |
-
|
105 |
-
with gr.Accordion("Advanced Settings", open=False):
|
106 |
-
negative_prompt = gr.Text(
|
107 |
-
label="Negative prompt",
|
108 |
-
max_lines=1,
|
109 |
-
placeholder="Enter a negative prompt",
|
110 |
-
visible=False,
|
111 |
-
)
|
112 |
-
|
113 |
-
seed = gr.Slider(
|
114 |
-
label="Seed",
|
115 |
-
minimum=0,
|
116 |
-
maximum=MAX_SEED,
|
117 |
-
step=1,
|
118 |
-
value=0,
|
119 |
-
)
|
120 |
-
|
121 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
122 |
-
|
123 |
-
with gr.Row():
|
124 |
-
width = gr.Slider(
|
125 |
-
label="Width",
|
126 |
-
minimum=256,
|
127 |
-
maximum=MAX_IMAGE_SIZE,
|
128 |
-
step=32,
|
129 |
-
value=1024,
|
130 |
-
)
|
131 |
-
|
132 |
-
height = gr.Slider(
|
133 |
-
label="Height",
|
134 |
-
minimum=256,
|
135 |
-
maximum=MAX_IMAGE_SIZE,
|
136 |
-
step=32,
|
137 |
-
value=1024,
|
138 |
-
)
|
139 |
-
|
140 |
-
with gr.Row():
|
141 |
-
guidance_scale = gr.Slider(
|
142 |
-
label="Guidance scale",
|
143 |
-
minimum=0.0,
|
144 |
-
maximum=10.0,
|
145 |
-
step=0.1,
|
146 |
-
value=0.0,
|
147 |
-
)
|
148 |
-
|
149 |
-
num_inference_steps = gr.Slider(
|
150 |
-
label="Number of inference steps",
|
151 |
-
minimum=1,
|
152 |
-
maximum=50,
|
153 |
-
step=1,
|
154 |
-
value=2,
|
155 |
-
)
|
156 |
-
|
157 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
158 |
-
gr.on(
|
159 |
-
triggers=[run_button.click, prompt.submit],
|
160 |
-
fn=infer,
|
161 |
-
inputs=[
|
162 |
-
prompt,
|
163 |
-
negative_prompt,
|
164 |
-
seed,
|
165 |
-
randomize_seed,
|
166 |
-
width,
|
167 |
-
height,
|
168 |
-
guidance_scale,
|
169 |
-
num_inference_steps,
|
170 |
-
],
|
171 |
-
outputs=[result, seed],
|
172 |
-
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
|
|
|
1 |
+
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from flask import Flask, request, jsonify
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
model_id = "ZB-Tech/Text-to-Image"
|
9 |
+
pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
10 |
+
pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
@app.route("/generate", methods=["POST"])
|
13 |
+
def generate_image():
|
14 |
+
data = request.get_json()
|
15 |
+
prompt = data.get("prompt", "A scenic landscape")
|
16 |
+
|
17 |
+
image = pipeline(prompt).images[0]
|
18 |
+
image_path = "generated_image.png"
|
19 |
+
image.save(image_path)
|
20 |
+
|
21 |
+
return jsonify({"image_url": image_path})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
if __name__ == "__main__":
|
24 |
+
app.run(host="0.0.0.0", port=7860)
|