harmionestark commited on
Commit
0987856
Β·
verified Β·
1 Parent(s): bb0fa9b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -172
app.py CHANGED
@@ -1,175 +1,24 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- # Force model to use float32 to avoid dtype mismatch
13
- torch_dtype = torch.float32
14
-
15
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
16
-
17
- # Explicitly convert submodules to float32 to prevent dtype mismatch
18
- pipe.to(device)
19
- pipe.text_encoder.to(device, dtype=torch.float32)
20
- pipe.vae.to(device, dtype=torch.float32)
21
- pipe.unet.to(device, dtype=torch.float32)
22
-
23
- def force_float32(model):
24
- for param in model.parameters():
25
- param.data = param.data.to(torch.float32)
26
- for buffer in model.buffers():
27
- buffer.data = buffer.data.to(torch.float32)
28
-
29
- force_float32(pipe.text_encoder)
30
- force_float32(pipe.vae)
31
- force_float32(pipe.unet)
32
-
33
- MAX_SEED = np.iinfo(np.int32).max
34
- MAX_IMAGE_SIZE = 1024
35
-
36
- # @spaces.GPU #[uncomment to use ZeroGPU]
37
- def infer(
38
- prompt,
39
- negative_prompt,
40
- seed,
41
- randomize_seed,
42
- width,
43
- height,
44
- guidance_scale,
45
- num_inference_steps,
46
- progress=gr.Progress(track_tqdm=True),
47
- ):
48
- if randomize_seed:
49
- seed = random.randint(0, MAX_SEED)
50
-
51
- generator = torch.Generator(device).manual_seed(int(seed))
52
-
53
- # Ensure text inputs are strings
54
- prompt = str(prompt) if prompt else ""
55
- negative_prompt = str(negative_prompt) if negative_prompt else ""
56
-
57
- # Ensure text input IDs are of type LongTensor
58
- if isinstance(prompt, torch.Tensor):
59
- prompt = prompt.to(torch.long).tolist()
60
- if isinstance(negative_prompt, torch.Tensor):
61
- negative_prompt = negative_prompt.to(torch.long).tolist()
62
-
63
- image = pipe(
64
- prompt=prompt,
65
- negative_prompt=negative_prompt,
66
- guidance_scale=float(guidance_scale),
67
- num_inference_steps=int(num_inference_steps),
68
- width=int(width),
69
- height=int(height),
70
- generator=generator,
71
- ).images[0]
72
-
73
- return image, seed
74
-
75
- examples = [
76
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
77
- "An astronaut riding a green horse",
78
- "A delicious ceviche cheesecake slice",
79
- ]
80
-
81
- css = """
82
- #col-container {
83
- margin: 0 auto;
84
- max-width: 640px;
85
- }
86
- """
87
-
88
- with gr.Blocks(css=css) as demo:
89
- with gr.Column(elem_id="col-container"):
90
- gr.Markdown(" # Text-to-Image Gradio Template")
91
-
92
- with gr.Row():
93
- prompt = gr.Text(
94
- label="Prompt",
95
- show_label=False,
96
- max_lines=1,
97
- placeholder="Enter your prompt",
98
- container=False,
99
- )
100
-
101
- run_button = gr.Button("Run", scale=0, variant="primary")
102
-
103
- result = gr.Image(label="Result", show_label=False)
104
-
105
- with gr.Accordion("Advanced Settings", open=False):
106
- negative_prompt = gr.Text(
107
- label="Negative prompt",
108
- max_lines=1,
109
- placeholder="Enter a negative prompt",
110
- visible=False,
111
- )
112
-
113
- seed = gr.Slider(
114
- label="Seed",
115
- minimum=0,
116
- maximum=MAX_SEED,
117
- step=1,
118
- value=0,
119
- )
120
-
121
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
122
-
123
- with gr.Row():
124
- width = gr.Slider(
125
- label="Width",
126
- minimum=256,
127
- maximum=MAX_IMAGE_SIZE,
128
- step=32,
129
- value=1024,
130
- )
131
-
132
- height = gr.Slider(
133
- label="Height",
134
- minimum=256,
135
- maximum=MAX_IMAGE_SIZE,
136
- step=32,
137
- value=1024,
138
- )
139
-
140
- with gr.Row():
141
- guidance_scale = gr.Slider(
142
- label="Guidance scale",
143
- minimum=0.0,
144
- maximum=10.0,
145
- step=0.1,
146
- value=0.0,
147
- )
148
-
149
- num_inference_steps = gr.Slider(
150
- label="Number of inference steps",
151
- minimum=1,
152
- maximum=50,
153
- step=1,
154
- value=2,
155
- )
156
-
157
- gr.Examples(examples=examples, inputs=[prompt])
158
- gr.on(
159
- triggers=[run_button.click, prompt.submit],
160
- fn=infer,
161
- inputs=[
162
- prompt,
163
- negative_prompt,
164
- seed,
165
- randomize_seed,
166
- width,
167
- height,
168
- guidance_scale,
169
- num_inference_steps,
170
- ],
171
- outputs=[result, seed],
172
- )
173
 
174
  if __name__ == "__main__":
175
- demo.launch()
 
1
+ from diffusers import StableDiffusionPipeline
 
 
 
 
 
2
  import torch
3
+ from flask import Flask, request, jsonify
4
+
5
+ app = Flask(__name__)
6
+
7
+ # Load the model
8
+ model_id = "ZB-Tech/Text-to-Image"
9
+ pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
10
+ pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
11
+
12
+ @app.route("/generate", methods=["POST"])
13
+ def generate_image():
14
+ data = request.get_json()
15
+ prompt = data.get("prompt", "A scenic landscape")
16
+
17
+ image = pipeline(prompt).images[0]
18
+ image_path = "generated_image.png"
19
+ image.save(image_path)
20
+
21
+ return jsonify({"image_url": image_path})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  if __name__ == "__main__":
24
+ app.run(host="0.0.0.0", port=7860)