File size: 3,166 Bytes
44ac4da
 
35a9fc2
1adbed4
 
 
28b4830
1adbed4
c904168
 
 
 
28b4830
ea57214
c904168
 
3edd3ca
c904168
3edd3ca
c904168
3edd3ca
c904168
3edd3ca
c904168
 
 
1934207
 
 
f98bc09
d9d6497
 
1adbed4
 
 
8cbefab
 
a275f69
f98bc09
a275f69
f86ffab
a275f69
 
c904168
 
2e71f02
c904168
f86ffab
a275f69
df3088f
 
d9d6497
c904168
f86ffab
a275f69
 
c904168
a275f69
df3088f
b9ffa51
c904168
8cbefab
df3088f
a275f69
8cbefab
 
 
 
df3088f
f0d14cb
8cbefab
a275f69
28b4830
 
8cbefab
 
df3088f
a275f69
28b4830
 
c904168
 
1934207
a275f69
f0d14cb
 
 
 
 
 
 
a275f69
c904168
 
54cd0e6
 
 
 
c904168
 
54cd0e6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import streamlit as st

def number_field(label, **kwargs):
  c1, c2 = st.columns([2, 4])
  c1.write(label)
  
  return c2.number_input('', **kwargs)

def print_kernel_execution(c1, c2, comp_flop, mem_bytes):
  arith_int = comp_flop/mem_bytes
  exec_time = (comp_flop/TFLOPS + mem_bytes/GB_S)*1000

  comp_flop = round(comp_flop/1e9, 2)
  mem_bytes = round(mem_bytes/1e6, 2)
  
  c1.write("GFLOP:")
  c2.write(str(comp_flop))
  c1.write("MB: ")
  c2.write(str(mem_bytes))
  c1.write("Arithm. intensity:")
  c2.write(str(arith_int))
  c1.write("Time (ms):")
  c2.write(str(exec_time))
  
  return exec_time

TFLOPS = 312e12
GB_S = 1935e9

st.header("Transformer parameters")
col1, col2 = st.columns([2, 4])

bs = number_field('Batch size', value=10)
h = number_field('Num heads', value=16)
d = number_field('Dimension', value=768)
n_start = number_field('Start seq', value=1)
n = number_field('End seq', value=1024)
l = number_field('Num layers', value=24)

st.header('Attention layer')

st.subheader('QKV projection')
st.caption("Multi-Head Attention")
mha_flop = 2*bs*1*d*3*d
mha_bytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
c1, c2 = st.columns([2, 3])
qkv_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)

st.caption("Multi-Query Attention")
mqa_flop = 2*bs*1*d*(1+2/h)*d
mqa_bytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
c1, c2 = st.columns([2, 3])
qkv_mha_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)

st.subheader('QK gemm')
st.write("Note that calculation depends on sequence length (n)")

st.caption("Multi-Head Attention")
mha_flop = 2*bs*h*(d/h)*n
mha_bytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
c1, c2 = st.columns([2, 3])
att1_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)

st.caption("Multi-Query Attention")
mqa_flop = 2*bs*h*(d/h)*n
mqa_bytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
c1, c2 = st.columns([2, 3])
att1_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)

st.subheader('Attention-value gemm')
st.write("Calculation depends on sequence length. We show numbers for maximum sequence length n.")
st.caption("Multi-Head Attention")
mha_flop = 2*bs*h*n*(d/h)
mha_bytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
c1, c2 = st.columns([2, 3])
att_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)

st.caption("Multi-Query Attention")
mqa_flop = 2*bs*h*n*(d/h)
mqa_bytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
c1, c2 = st.columns([2, 3])
att_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)

st.subheader('Output projection')
mlp1_flop = 2*bs*1*d
mlp1_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
c1, c2 = st.columns([2, 3])
mlp1_time = print_kernel_execution(c1, c2, mlp1_flop, mlp1_bytes)

st.subheader('Element-wise ops')
st.write("A couple of layers ")

st.header('MLP')
st.subheader('First Linear')
mlp1_flop = 2*bs*1*d*4*d
mlp1_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
c1, c2 = st.columns([2, 3])
mlp1_time = print_kernel_execution(c1, c2, mlp1_flop, mlp1_bytes)

st.subheader('Second Linear')
mlp2_flop = 2*bs*1*d*4*d
mlp2_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
c1, c2 = st.columns([2, 3])
mlp2_time = print_kernel_execution(c1, c2, mlp2_flop, mlp2_bytes)