File size: 1,001 Bytes
44ac4da
 
f98bc09
d9d6497
 
 
b01cd50
d9d6497
b01cd50
d9d6497
b01cd50
d9d6497
b01cd50
f98bc09
 
f86ffab
f98bc09
 
f86ffab
23b5435
2e71f02
4719f35
 
 
 
 
 
f86ffab
 
 
 
23b5435
d9d6497
 
 
 
 
 
 
f86ffab
23b5435
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import streamlit as st

st.header("Transformer parameters")
col1, col2 = st.columns([2, 4])

col1.write('Batch size: ')
bs = col2.number_input('', value=10)
col1.write('Num heads:')
h = col2.number_input('', value=16)
col1.write('Dimension:')
d = col2.number_input('', value=768)
col1.write('Seq length:')
n = col2.number_input('', value=1024)

st.header('Query, Key, Value projection')

mha_flop = 2*bs*n*d*3*d
mha_bytes = 2*bs*n*d + 2*3*d*d + 2*bs*n*3*d

st.subheader("Multi-query Attention")
c1, c2 = st.columns([2, 3])
c1.write("FLOP:")
c2.write(str(mha_flop))
c1.write("Bytes: ")
c2.write(str(mha_bytes))
c1.write("Arithm. intensity:")
c2.write(str(mha_flop/mha_bytes))

mqa_flop = 2*bs*n*d*(1+2/h)*d
mqa_bytes = 2*bs*n*d + 2*(2/h)*d*d + 2*bs*n*(2/h)*d

st.subheader("Multi-query Attention")
c1, c2 = st.columns([2, 3])
c1.write("FLOP:")
c2.write(str(mqa_flop))
c1.write("Bytes: ")
c2.write(str(mqa_bytes))
c1.write("Arithm. intensity:")
c2.write(str(mqa_flop/mqa_bytes))

st.header('Attention')