Spaces:
Runtime error
Runtime error
File size: 4,283 Bytes
44ac4da 35a9fc2 1adbed4 28b4830 1adbed4 86cd028 c904168 86cd028 c904168 28b4830 ea57214 c904168 3edd3ca c904168 3edd3ca c904168 3edd3ca c904168 3edd3ca c904168 1934207 f98bc09 d9d6497 1adbed4 8cbefab a275f69 f98bc09 a275f69 f86ffab a275f69 c904168 2e71f02 c904168 f86ffab a275f69 df3088f d9d6497 2a3864d f86ffab a275f69 c904168 a275f69 df3088f b9ffa51 c904168 8cbefab df3088f a275f69 8cbefab df3088f f0d14cb 8cbefab a275f69 28b4830 8cbefab 729a063 df3088f a275f69 28b4830 c904168 729a063 1934207 a275f69 86cd028 f0d14cb 86cd028 f0d14cb 729a063 86cd028 3a743e7 86cd028 729a063 2a3864d a275f69 c904168 54cd0e6 c904168 54cd0e6 729a063 2a3864d 729a063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import streamlit as st
def number_field(label, **kwargs):
c1, c2 = st.columns([2, 4])
c1.write(label)
return c2.number_input('', **kwargs)
def calc_exec_time(comp_flop, mem_bytes):
return (comp_flop/TFLOPS + mem_bytes/GB_S)*1000
def print_kernel_execution(c1, c2, comp_flop, mem_bytes):
arith_int = comp_flop/mem_bytes
exec_time = calc_exec_time(comp_flop, mem_bytes)
comp_flop = round(comp_flop/1e9, 2)
mem_bytes = round(mem_bytes/1e6, 2)
c1.write("GFLOP:")
c2.write(str(comp_flop))
c1.write("MB: ")
c2.write(str(mem_bytes))
c1.write("Arithm. intensity:")
c2.write(str(arith_int))
c1.write("Time (ms):")
c2.write(str(exec_time))
return exec_time
TFLOPS = 312e12
GB_S = 1935e9
st.header("Transformer parameters")
col1, col2 = st.columns([2, 4])
bs = number_field('Batch size', value=10)
h = number_field('Num heads', value=16)
d = number_field('Dimension', value=768)
n_start = number_field('Start seq', value=1)
n = number_field('End seq', value=1024)
l = number_field('Num layers', value=24)
st.header('Attention layer')
st.subheader('QKV projection')
st.caption("Multi-Head Attention")
mha_flop = 2*bs*1*d*3*d
mha_bytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
c1, c2 = st.columns([2, 3])
qkv_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
st.caption("Multi-Query Attention")
mqa_flop = 2*bs*1*d*(1+2/h)*d
mqa_bytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
c1, c2 = st.columns([2, 3])
qkv_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
st.subheader('QK gemm')
st.write("Note that calculation depends on sequence length (n)")
st.caption("Multi-Head Attention")
mha_flop = 2*bs*h*(d/h)*n
mha_bytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
c1, c2 = st.columns([2, 3])
att1_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
st.caption("Multi-Query Attention")
mqa_flop = 2*bs*h*(d/h)*n
mqa_bytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
c1, c2 = st.columns([2, 3])
att1_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
st.subheader('Attention-value gemm')
st.write("Calculation depends on sequence length. We show numbers for maximum sequence length n.")
st.caption("Multi-Head Attention")
mha_flop = 2*bs*h*n*(d/h)
mha_bytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
c1, c2 = st.columns([2, 3])
att2_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
st.caption("Multi-Query Attention")
mqa_flop = 2*bs*h*n*(d/h)
mqa_bytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
c1, c2 = st.columns([2, 3])
att2_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
st.subheader('Output projection')
out_flop = 2*bs*1*d*d
out_bytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
c1, c2 = st.columns([2, 3])
out_time = print_kernel_execution(c1, c2, out_flop, out_bytes)
st.subheader('Element-wise ops')
st.write("We also need to take into the softmax layer, layer norm, and residual connection. We assume that these operations are memory bound. ")
st.caption("Softmax")
softmax_bytes = 2*bs*h*n + 2*bs*h*n
c1, c2 = st.columns([2, 3])
softmax_time = print_kernel_execution(c1, c2, 0, softmax_bytes)
st.caption("Layer norm/residual connection")
ln_bytes = 2*bs*1*d
ln_flop = 0
ln_time = print_kernel_execution(c1, c2, 0, ln_bytes)
st.header('MLP')
st.subheader('First Linear')
mlp1_flop = 2*bs*1*d*4*d
mlp1_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
c1, c2 = st.columns([2, 3])
mlp1_time = print_kernel_execution(c1, c2, mlp1_flop, mlp1_bytes)
st.subheader('Second Linear')
mlp2_flop = 2*bs*1*d*4*d
mlp2_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
c1, c2 = st.columns([2, 3])
mlp2_time = print_kernel_execution(c1, c2, mlp2_flop, mlp2_bytes)
st.subheader('Element-wise ops')
st.write("We also need to take into the GeLU, layer norm, and residual connection. We assume that these operations are memory bound. ")
ln_bytes = 2*bs*1*d
ln_flop = 0
ln_time = print_kernel_execution(c1, c2, 0, ln_bytes)
st.header("Adding it all up")
shared_time = out_time + softmax_time + 2*ln_time + mlp1_time + mlp2_time + 3*ln_time
mha_total_time = qkv_mha_time + att1_mha_time + att2_mha_time + shared_time
mqa_total_time = qkv_mqa_time + att1_mqa_time + att2_mqa_time + shared_time
st.write("MHA exec time (ms): " + str(mha_total_time))
st.write("MQA exec time (ms): " + str(mqa_total_time)) |