haowu11 commited on
Commit
e36106f
·
verified ·
1 Parent(s): 727cec7

Upload pipeline_controlnet_xl_kolors_img2img_face.py

Browse files
kolors/pipelines/pipeline_controlnet_xl_kolors_img2img_face.py ADDED
@@ -0,0 +1,1856 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ import torch.nn.functional as F
23
+ from transformers import (
24
+ CLIPImageProcessor,
25
+ CLIPTextModel,
26
+ CLIPTextModelWithProjection,
27
+ CLIPTokenizer,
28
+ CLIPVisionModelWithProjection,
29
+ )
30
+
31
+ from diffusers.utils.import_utils import is_invisible_watermark_available
32
+
33
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
34
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
35
+ from diffusers.loaders import (
36
+ FromSingleFileMixin,
37
+ IPAdapterMixin,
38
+ StableDiffusionXLLoraLoaderMixin,
39
+ TextualInversionLoaderMixin,
40
+ )
41
+ from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
42
+ from diffusers.models.attention_processor import (
43
+ AttnProcessor2_0,
44
+ XFormersAttnProcessor,
45
+ )
46
+ from diffusers.models.lora import adjust_lora_scale_text_encoder
47
+ from diffusers.schedulers import KarrasDiffusionSchedulers
48
+ from diffusers.utils import (
49
+ USE_PEFT_BACKEND,
50
+ deprecate,
51
+ logging,
52
+ replace_example_docstring,
53
+ scale_lora_layers,
54
+ unscale_lora_layers,
55
+ )
56
+ from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
57
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
58
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
59
+ from diffusers.pipelines.controlnet import MultiControlNetModel
60
+
61
+ from ..models.controlnet import ControlNetModel
62
+ from kolors.models.ipa_faceid_plus.ipa_faceid_plus import ProjPlusModel
63
+ from kolors.models.ipa_faceid_plus.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
64
+
65
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
66
+
67
+
68
+
69
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
70
+ def retrieve_latents(
71
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
72
+ ):
73
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
74
+ return encoder_output.latent_dist.sample(generator)
75
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
76
+ return encoder_output.latent_dist.mode()
77
+ elif hasattr(encoder_output, "latents"):
78
+ return encoder_output.latents
79
+ else:
80
+ raise AttributeError("Could not access latents of provided encoder_output")
81
+
82
+
83
+ class StableDiffusionXLControlNetImg2ImgPipeline(
84
+ DiffusionPipeline,
85
+ StableDiffusionMixin,
86
+ TextualInversionLoaderMixin,
87
+ StableDiffusionXLLoraLoaderMixin,
88
+ FromSingleFileMixin,
89
+ IPAdapterMixin,
90
+ ):
91
+ r"""
92
+ Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
93
+
94
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
95
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
96
+
97
+ The pipeline also inherits the following loading methods:
98
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
99
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
100
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
101
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
102
+
103
+ Args:
104
+ vae ([`AutoencoderKL`]):
105
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
106
+ text_encoder ([`CLIPTextModel`]):
107
+ Frozen text-encoder. Stable Diffusion uses the text portion of
108
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
109
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
110
+ tokenizer (`CLIPTokenizer`):
111
+ Tokenizer of class
112
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
113
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
114
+ controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
115
+ Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
116
+ as a list, the outputs from each ControlNet are added together to create one combined additional
117
+ conditioning.
118
+ scheduler ([`SchedulerMixin`]):
119
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
120
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
121
+ requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
122
+ Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
123
+ config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
124
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
125
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
126
+ `stabilityai/stable-diffusion-xl-base-1-0`.
127
+ add_watermarker (`bool`, *optional*):
128
+ Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
129
+ watermark output images. If not defined, it will default to True if the package is installed, otherwise no
130
+ watermarker will be used.
131
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
132
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
133
+ """
134
+
135
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
136
+ _optional_components = [
137
+ "tokenizer",
138
+ "text_encoder",
139
+ "feature_extractor",
140
+ "image_encoder",
141
+ ]
142
+ _callback_tensor_inputs = [
143
+ "latents",
144
+ "prompt_embeds",
145
+ "negative_prompt_embeds",
146
+ "add_text_embeds",
147
+ "add_time_ids",
148
+ "negative_pooled_prompt_embeds",
149
+ "add_neg_time_ids",
150
+ ]
151
+
152
+ def __init__(
153
+ self,
154
+ vae: AutoencoderKL,
155
+ text_encoder: CLIPTextModel,
156
+ tokenizer: CLIPTokenizer,
157
+ unet: UNet2DConditionModel,
158
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
159
+ scheduler: KarrasDiffusionSchedulers,
160
+ requires_aesthetics_score: bool = False,
161
+ force_zeros_for_empty_prompt: bool = True,
162
+ feature_extractor: CLIPImageProcessor = None,
163
+ image_encoder: CLIPVisionModelWithProjection = None,
164
+ face_clip_encoder: CLIPVisionModelWithProjection = None,
165
+ face_clip_processor: CLIPImageProcessor = None,
166
+ ):
167
+ super().__init__()
168
+
169
+ if face_clip_encoder is not None:
170
+ self.image_proj_model = self.init_ip_adapter_proj_layer(
171
+ clip_embeddings_dim = face_clip_encoder.config.hidden_size,
172
+ num_tokens = 6
173
+ )
174
+
175
+ if isinstance(controlnet, (list, tuple)):
176
+ controlnet = MultiControlNetModel(controlnet)
177
+
178
+ self.register_modules(
179
+ vae=vae,
180
+ text_encoder=text_encoder,
181
+ tokenizer=tokenizer,
182
+ unet=unet,
183
+ controlnet=controlnet,
184
+ scheduler=scheduler,
185
+ feature_extractor=feature_extractor,
186
+ image_encoder=image_encoder,
187
+ face_clip_encoder=face_clip_encoder,
188
+ face_clip_processor=face_clip_processor,
189
+ )
190
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
191
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
192
+ self.control_image_processor = VaeImageProcessor(
193
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
194
+ )
195
+
196
+ self.watermark = None
197
+
198
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
199
+ self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
200
+
201
+ #### set ip adapter module
202
+ def set_ip_adapter(self, device, num_tokens = 6):
203
+ unet = self.unet
204
+ attn_procs = {}
205
+ for name in unet.attn_processors.keys():
206
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
207
+ if name.startswith("mid_block"):
208
+ hidden_size = unet.config.block_out_channels[-1]
209
+ elif name.startswith("up_blocks"):
210
+ block_id = int(name[len("up_blocks.")])
211
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
212
+ elif name.startswith("down_blocks"):
213
+ block_id = int(name[len("down_blocks.")])
214
+ hidden_size = unet.config.block_out_channels[block_id]
215
+ if cross_attention_dim is None:
216
+ attn_procs[name] = AttnProcessor()
217
+ else:
218
+ attn_procs[name] = IPAttnProcessor(
219
+ hidden_size = hidden_size,
220
+ cross_attention_dim = cross_attention_dim,
221
+ scale = 1.0,
222
+ num_tokens = num_tokens
223
+ ).to(device, dtype = unet.dtype)
224
+ unet.set_attn_processor(attn_procs)
225
+
226
+ def init_ip_adapter_proj_layer(self, clip_embeddings_dim, num_tokens):
227
+ image_proj_model = ProjPlusModel(
228
+ cross_attention_dim = 4096,
229
+ id_embeddings_dim = 512,
230
+ clip_embeddings_dim = clip_embeddings_dim,
231
+ num_tokens = num_tokens
232
+ )
233
+ return image_proj_model
234
+
235
+ #### load ip adapter model weight
236
+ def load_ip_adapter_faceid_plus(self, ip_faceid_model_path, device):
237
+ params = torch.load(ip_faceid_model_path, 'cpu')
238
+ self.image_proj_model.load_state_dict(params["image_proj"])
239
+ self.image_proj_model.to(device, dtype = self.unet.dtype)
240
+
241
+ self.set_ip_adapter(num_tokens = 6, device = device)
242
+ ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
243
+ ip_layers.load_state_dict(params["adapter_modules"])
244
+
245
+ def set_face_fidelity_scale(self, scale):
246
+ for attn_processor in self.unet.attn_processors.values():
247
+ if isinstance(attn_processor, IPAttnProcessor):
248
+ attn_processor.scale = scale
249
+
250
+ #### get image embeddings ####
251
+ def get_clip_feat(self, face_crop_image, device):
252
+ face_clip_images = self.face_clip_processor(images = face_crop_image, return_tensors = "pt").pixel_values
253
+ face_clip_images = face_clip_images.to(device, dtype = torch.float16)
254
+
255
+ with torch.no_grad():
256
+ face_clip_embeddings = self.face_clip_encoder(
257
+ face_clip_images,
258
+ output_hidden_states = True
259
+ ).hidden_states[-2]
260
+ return face_clip_embeddings
261
+ def get_fused_face_embedds(self, face_insightface_embeds, face_crop_image, num_images_per_prompt, device):
262
+ with torch.inference_mode():
263
+ face_clip_embeds = self.get_clip_feat(face_crop_image, device)
264
+ face_clip_embeds = face_clip_embeds.to(device = device, dtype =face_insightface_embeds.dtype)
265
+
266
+ image_prompt_embeds = self.image_proj_model(face_insightface_embeds, face_clip_embeds)
267
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(face_insightface_embeds), torch.zeros_like(face_clip_embeds))
268
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
269
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_images_per_prompt, 1)
270
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
271
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_images_per_prompt, 1)
272
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
273
+
274
+ return (image_prompt_embeds, uncond_image_prompt_embeds)
275
+
276
+
277
+ def encode_prompt(
278
+ self,
279
+ prompt,
280
+ device: Optional[torch.device] = None,
281
+ num_images_per_prompt: int = 1,
282
+ do_classifier_free_guidance: bool = True,
283
+ negative_prompt=None,
284
+ prompt_embeds: Optional[torch.FloatTensor] = None,
285
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
286
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
287
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
288
+ lora_scale: Optional[float] = None,
289
+ ):
290
+ r"""
291
+ Encodes the prompt into text encoder hidden states.
292
+
293
+ Args:
294
+ prompt (`str` or `List[str]`, *optional*):
295
+ prompt to be encoded
296
+ device: (`torch.device`):
297
+ torch device
298
+ num_images_per_prompt (`int`):
299
+ number of images that should be generated per prompt
300
+ do_classifier_free_guidance (`bool`):
301
+ whether to use classifier free guidance or not
302
+ negative_prompt (`str` or `List[str]`, *optional*):
303
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
304
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
305
+ less than `1`).
306
+ prompt_embeds (`torch.FloatTensor`, *optional*):
307
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
308
+ provided, text embeddings will be generated from `prompt` input argument.
309
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
310
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
311
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
312
+ argument.
313
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
314
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
315
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
316
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
317
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
318
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
319
+ input argument.
320
+ lora_scale (`float`, *optional*):
321
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
322
+ """
323
+ # from IPython import embed; embed(); exit()
324
+ device = device or self._execution_device
325
+
326
+ # set lora scale so that monkey patched LoRA
327
+ # function of text encoder can correctly access it
328
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
329
+ self._lora_scale = lora_scale
330
+
331
+ if prompt is not None and isinstance(prompt, str):
332
+ batch_size = 1
333
+ elif prompt is not None and isinstance(prompt, list):
334
+ batch_size = len(prompt)
335
+ else:
336
+ batch_size = prompt_embeds.shape[0]
337
+
338
+ # Define tokenizers and text encoders
339
+ tokenizers = [self.tokenizer]
340
+ text_encoders = [self.text_encoder]
341
+
342
+ if prompt_embeds is None:
343
+ # textual inversion: procecss multi-vector tokens if necessary
344
+ prompt_embeds_list = []
345
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
346
+ if isinstance(self, TextualInversionLoaderMixin):
347
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
348
+
349
+ text_inputs = tokenizer(
350
+ prompt,
351
+ padding="max_length",
352
+ max_length=256,
353
+ truncation=True,
354
+ return_tensors="pt",
355
+ ).to('cuda')
356
+ output = text_encoder(
357
+ input_ids=text_inputs['input_ids'] ,
358
+ attention_mask=text_inputs['attention_mask'],
359
+ position_ids=text_inputs['position_ids'],
360
+ output_hidden_states=True)
361
+ prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
362
+ pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
363
+ bs_embed, seq_len, _ = prompt_embeds.shape
364
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
365
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
366
+
367
+ prompt_embeds_list.append(prompt_embeds)
368
+
369
+ # prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
370
+ prompt_embeds = prompt_embeds_list[0]
371
+
372
+ # get unconditional embeddings for classifier free guidance
373
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
374
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
375
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
376
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
377
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
378
+ # negative_prompt = negative_prompt or ""
379
+ uncond_tokens: List[str]
380
+ if negative_prompt is None:
381
+ uncond_tokens = [""] * batch_size
382
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
383
+ raise TypeError(
384
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
385
+ f" {type(prompt)}."
386
+ )
387
+ elif isinstance(negative_prompt, str):
388
+ uncond_tokens = [negative_prompt]
389
+ elif batch_size != len(negative_prompt):
390
+ raise ValueError(
391
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
392
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
393
+ " the batch size of `prompt`."
394
+ )
395
+ else:
396
+ uncond_tokens = negative_prompt
397
+
398
+ negative_prompt_embeds_list = []
399
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
400
+ # textual inversion: procecss multi-vector tokens if necessary
401
+ if isinstance(self, TextualInversionLoaderMixin):
402
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
403
+
404
+ max_length = prompt_embeds.shape[1]
405
+ uncond_input = tokenizer(
406
+ uncond_tokens,
407
+ padding="max_length",
408
+ max_length=max_length,
409
+ truncation=True,
410
+ return_tensors="pt",
411
+ ).to('cuda')
412
+ output = text_encoder(
413
+ input_ids=uncond_input['input_ids'] ,
414
+ attention_mask=uncond_input['attention_mask'],
415
+ position_ids=uncond_input['position_ids'],
416
+ output_hidden_states=True)
417
+ negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
418
+ negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
419
+
420
+ if do_classifier_free_guidance:
421
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
422
+ seq_len = negative_prompt_embeds.shape[1]
423
+
424
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
425
+
426
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
427
+ negative_prompt_embeds = negative_prompt_embeds.view(
428
+ batch_size * num_images_per_prompt, seq_len, -1
429
+ )
430
+
431
+ # For classifier free guidance, we need to do two forward passes.
432
+ # Here we concatenate the unconditional and text embeddings into a single batch
433
+ # to avoid doing two forward passes
434
+
435
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
436
+
437
+ # negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
438
+ negative_prompt_embeds = negative_prompt_embeds_list[0]
439
+
440
+ bs_embed = pooled_prompt_embeds.shape[0]
441
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
442
+ bs_embed * num_images_per_prompt, -1
443
+ )
444
+ if do_classifier_free_guidance:
445
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
446
+ bs_embed * num_images_per_prompt, -1
447
+ )
448
+
449
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
450
+
451
+
452
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
453
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
454
+ dtype = next(self.image_encoder.parameters()).dtype
455
+
456
+ if not isinstance(image, torch.Tensor):
457
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
458
+
459
+ image = image.to(device=device, dtype=dtype)
460
+ if output_hidden_states:
461
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
462
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
463
+ uncond_image_enc_hidden_states = self.image_encoder(
464
+ torch.zeros_like(image), output_hidden_states=True
465
+ ).hidden_states[-2]
466
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
467
+ num_images_per_prompt, dim=0
468
+ )
469
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
470
+ else:
471
+ image_embeds = self.image_encoder(image).image_embeds
472
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
473
+ uncond_image_embeds = torch.zeros_like(image_embeds)
474
+
475
+ return image_embeds, uncond_image_embeds
476
+
477
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
478
+ def prepare_ip_adapter_image_embeds(
479
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
480
+ ):
481
+ image_embeds = []
482
+ if do_classifier_free_guidance:
483
+ negative_image_embeds = []
484
+ if ip_adapter_image_embeds is None:
485
+ if not isinstance(ip_adapter_image, list):
486
+ ip_adapter_image = [ip_adapter_image]
487
+
488
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
489
+ raise ValueError(
490
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
491
+ )
492
+
493
+ for single_ip_adapter_image, image_proj_layer in zip(
494
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
495
+ ):
496
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
497
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
498
+ single_ip_adapter_image, device, 1, output_hidden_state
499
+ )
500
+
501
+ image_embeds.append(single_image_embeds[None, :])
502
+ if do_classifier_free_guidance:
503
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
504
+ else:
505
+ for single_image_embeds in ip_adapter_image_embeds:
506
+ if do_classifier_free_guidance:
507
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
508
+ negative_image_embeds.append(single_negative_image_embeds)
509
+ image_embeds.append(single_image_embeds)
510
+
511
+ ip_adapter_image_embeds = []
512
+ for i, single_image_embeds in enumerate(image_embeds):
513
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
514
+ if do_classifier_free_guidance:
515
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
516
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
517
+
518
+ single_image_embeds = single_image_embeds.to(device=device)
519
+ ip_adapter_image_embeds.append(single_image_embeds)
520
+
521
+ return ip_adapter_image_embeds
522
+
523
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
524
+ def prepare_extra_step_kwargs(self, generator, eta):
525
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
526
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
527
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
528
+ # and should be between [0, 1]
529
+
530
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
531
+ extra_step_kwargs = {}
532
+ if accepts_eta:
533
+ extra_step_kwargs["eta"] = eta
534
+
535
+ # check if the scheduler accepts generator
536
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
537
+ if accepts_generator:
538
+ extra_step_kwargs["generator"] = generator
539
+ return extra_step_kwargs
540
+
541
+ def check_inputs(
542
+ self,
543
+ prompt,
544
+ image,
545
+ strength,
546
+ num_inference_steps,
547
+ callback_steps,
548
+ negative_prompt=None,
549
+ prompt_embeds=None,
550
+ negative_prompt_embeds=None,
551
+ pooled_prompt_embeds=None,
552
+ negative_pooled_prompt_embeds=None,
553
+ ip_adapter_image=None,
554
+ ip_adapter_image_embeds=None,
555
+ controlnet_conditioning_scale=1.0,
556
+ control_guidance_start=0.0,
557
+ control_guidance_end=1.0,
558
+ callback_on_step_end_tensor_inputs=None,
559
+ ):
560
+ if strength < 0 or strength > 1:
561
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
562
+ if num_inference_steps is None:
563
+ raise ValueError("`num_inference_steps` cannot be None.")
564
+ elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
565
+ raise ValueError(
566
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
567
+ f" {type(num_inference_steps)}."
568
+ )
569
+
570
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
571
+ raise ValueError(
572
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
573
+ f" {type(callback_steps)}."
574
+ )
575
+
576
+ if callback_on_step_end_tensor_inputs is not None and not all(
577
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
578
+ ):
579
+ raise ValueError(
580
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
581
+ )
582
+
583
+ if prompt is not None and prompt_embeds is not None:
584
+ raise ValueError(
585
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
586
+ " only forward one of the two."
587
+ )
588
+ elif prompt is None and prompt_embeds is None:
589
+ raise ValueError(
590
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
591
+ )
592
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
593
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
594
+
595
+ if negative_prompt is not None and negative_prompt_embeds is not None:
596
+ raise ValueError(
597
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
598
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
599
+ )
600
+
601
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
602
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
603
+ raise ValueError(
604
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
605
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
606
+ f" {negative_prompt_embeds.shape}."
607
+ )
608
+
609
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
610
+ raise ValueError(
611
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
612
+ )
613
+
614
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
615
+ raise ValueError(
616
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
617
+ )
618
+
619
+ # `prompt` needs more sophisticated handling when there are multiple
620
+ # conditionings.
621
+ if isinstance(self.controlnet, MultiControlNetModel):
622
+ if isinstance(prompt, list):
623
+ logger.warning(
624
+ f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
625
+ " prompts. The conditionings will be fixed across the prompts."
626
+ )
627
+
628
+ # Check `image`
629
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
630
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
631
+ )
632
+ if (
633
+ isinstance(self.controlnet, ControlNetModel)
634
+ or is_compiled
635
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
636
+ ):
637
+ self.check_image(image, prompt, prompt_embeds)
638
+ elif (
639
+ isinstance(self.controlnet, MultiControlNetModel)
640
+ or is_compiled
641
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
642
+ ):
643
+ if not isinstance(image, list):
644
+ raise TypeError("For multiple controlnets: `image` must be type `list`")
645
+
646
+ # When `image` is a nested list:
647
+ # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
648
+ elif any(isinstance(i, list) for i in image):
649
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
650
+ elif len(image) != len(self.controlnet.nets):
651
+ raise ValueError(
652
+ f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
653
+ )
654
+
655
+ for image_ in image:
656
+ self.check_image(image_, prompt, prompt_embeds)
657
+ else:
658
+ assert False
659
+
660
+ # Check `controlnet_conditioning_scale`
661
+ if (
662
+ isinstance(self.controlnet, ControlNetModel)
663
+ or is_compiled
664
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
665
+ ):
666
+ if not isinstance(controlnet_conditioning_scale, float):
667
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
668
+ elif (
669
+ isinstance(self.controlnet, MultiControlNetModel)
670
+ or is_compiled
671
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
672
+ ):
673
+ if isinstance(controlnet_conditioning_scale, list):
674
+ if any(isinstance(i, list) for i in controlnet_conditioning_scale):
675
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
676
+ elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
677
+ self.controlnet.nets
678
+ ):
679
+ raise ValueError(
680
+ "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
681
+ " the same length as the number of controlnets"
682
+ )
683
+ else:
684
+ assert False
685
+
686
+ if not isinstance(control_guidance_start, (tuple, list)):
687
+ control_guidance_start = [control_guidance_start]
688
+
689
+ if not isinstance(control_guidance_end, (tuple, list)):
690
+ control_guidance_end = [control_guidance_end]
691
+
692
+ if len(control_guidance_start) != len(control_guidance_end):
693
+ raise ValueError(
694
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
695
+ )
696
+
697
+ if isinstance(self.controlnet, MultiControlNetModel):
698
+ if len(control_guidance_start) != len(self.controlnet.nets):
699
+ raise ValueError(
700
+ f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
701
+ )
702
+
703
+ for start, end in zip(control_guidance_start, control_guidance_end):
704
+ if start >= end:
705
+ raise ValueError(
706
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
707
+ )
708
+ if start < 0.0:
709
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
710
+ if end > 1.0:
711
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
712
+
713
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
714
+ raise ValueError(
715
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
716
+ )
717
+
718
+ if ip_adapter_image_embeds is not None:
719
+ if not isinstance(ip_adapter_image_embeds, list):
720
+ raise ValueError(
721
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
722
+ )
723
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
724
+ raise ValueError(
725
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
726
+ )
727
+
728
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
729
+ def check_image(self, image, prompt, prompt_embeds):
730
+ image_is_pil = isinstance(image, PIL.Image.Image)
731
+ image_is_tensor = isinstance(image, torch.Tensor)
732
+ image_is_np = isinstance(image, np.ndarray)
733
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
734
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
735
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
736
+
737
+ if (
738
+ not image_is_pil
739
+ and not image_is_tensor
740
+ and not image_is_np
741
+ and not image_is_pil_list
742
+ and not image_is_tensor_list
743
+ and not image_is_np_list
744
+ ):
745
+ raise TypeError(
746
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
747
+ )
748
+
749
+ if image_is_pil:
750
+ image_batch_size = 1
751
+ else:
752
+ image_batch_size = len(image)
753
+
754
+ if prompt is not None and isinstance(prompt, str):
755
+ prompt_batch_size = 1
756
+ elif prompt is not None and isinstance(prompt, list):
757
+ prompt_batch_size = len(prompt)
758
+ elif prompt_embeds is not None:
759
+ prompt_batch_size = prompt_embeds.shape[0]
760
+
761
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
762
+ raise ValueError(
763
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
764
+ )
765
+
766
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
767
+ def prepare_control_image(
768
+ self,
769
+ image,
770
+ width,
771
+ height,
772
+ batch_size,
773
+ num_images_per_prompt,
774
+ device,
775
+ dtype,
776
+ do_classifier_free_guidance=False,
777
+ guess_mode=False,
778
+ ):
779
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
780
+ image_batch_size = image.shape[0]
781
+
782
+ if image_batch_size == 1:
783
+ repeat_by = batch_size
784
+ else:
785
+ # image batch size is the same as prompt batch size
786
+ repeat_by = num_images_per_prompt
787
+
788
+ image = image.repeat_interleave(repeat_by, dim=0)
789
+
790
+ image = image.to(device=device, dtype=dtype)
791
+
792
+ if do_classifier_free_guidance and not guess_mode:
793
+ image = torch.cat([image] * 2)
794
+
795
+ return image
796
+
797
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
798
+ def get_timesteps(self, num_inference_steps, strength, device):
799
+ # get the original timestep using init_timestep
800
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
801
+
802
+ t_start = max(num_inference_steps - init_timestep, 0)
803
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
804
+ if hasattr(self.scheduler, "set_begin_index"):
805
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
806
+
807
+ return timesteps, num_inference_steps - t_start
808
+
809
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
810
+ def prepare_latents(
811
+ self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
812
+ ):
813
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
814
+ raise ValueError(
815
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
816
+ )
817
+
818
+ # Offload text encoder if `enable_model_cpu_offload` was enabled
819
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
820
+ torch.cuda.empty_cache()
821
+
822
+ image = image.to(device=device, dtype=dtype)
823
+
824
+ batch_size = batch_size * num_images_per_prompt
825
+
826
+ if image.shape[1] == 4:
827
+ init_latents = image
828
+
829
+ else:
830
+ # make sure the VAE is in float32 mode, as it overflows in float16
831
+ if self.vae.config.force_upcast:
832
+ image = image.float()
833
+ self.vae.to(dtype=torch.float32)
834
+
835
+ if isinstance(generator, list) and len(generator) != batch_size:
836
+ raise ValueError(
837
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
838
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
839
+ )
840
+
841
+ elif isinstance(generator, list):
842
+ init_latents = [
843
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
844
+ for i in range(batch_size)
845
+ ]
846
+ init_latents = torch.cat(init_latents, dim=0)
847
+ else:
848
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
849
+
850
+ if self.vae.config.force_upcast:
851
+ self.vae.to(dtype)
852
+
853
+ init_latents = init_latents.to(dtype)
854
+
855
+ init_latents = self.vae.config.scaling_factor * init_latents
856
+
857
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
858
+ # expand init_latents for batch_size
859
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
860
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
861
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
862
+ raise ValueError(
863
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
864
+ )
865
+ else:
866
+ init_latents = torch.cat([init_latents], dim=0)
867
+
868
+ if add_noise:
869
+ shape = init_latents.shape
870
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
871
+ # get latents
872
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
873
+
874
+ latents = init_latents
875
+
876
+ return latents
877
+
878
+
879
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
880
+ def prepare_latents_t2i(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
881
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
882
+ if isinstance(generator, list) and len(generator) != batch_size:
883
+ raise ValueError(
884
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
885
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
886
+ )
887
+
888
+ if latents is None:
889
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
890
+ else:
891
+ latents = latents.to(device)
892
+
893
+ # scale the initial noise by the standard deviation required by the scheduler
894
+ latents = latents * self.scheduler.init_noise_sigma
895
+ return latents
896
+
897
+
898
+
899
+ def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
900
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
901
+
902
+ passed_add_embed_dim = (
903
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
904
+ )
905
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
906
+
907
+ if expected_add_embed_dim != passed_add_embed_dim:
908
+ raise ValueError(
909
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
910
+ )
911
+
912
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
913
+ return add_time_ids
914
+
915
+
916
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
917
+ def upcast_vae(self):
918
+ dtype = self.vae.dtype
919
+ self.vae.to(dtype=torch.float32)
920
+ use_torch_2_0_or_xformers = isinstance(
921
+ self.vae.decoder.mid_block.attentions[0].processor,
922
+ (
923
+ AttnProcessor2_0,
924
+ XFormersAttnProcessor,
925
+ ),
926
+ )
927
+ # if xformers or torch_2_0 is used attention block does not need
928
+ # to be in float32 which can save lots of memory
929
+ if use_torch_2_0_or_xformers:
930
+ self.vae.post_quant_conv.to(dtype)
931
+ self.vae.decoder.conv_in.to(dtype)
932
+ self.vae.decoder.mid_block.to(dtype)
933
+
934
+ @property
935
+ def guidance_scale(self):
936
+ return self._guidance_scale
937
+
938
+ @property
939
+ def clip_skip(self):
940
+ return self._clip_skip
941
+
942
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
943
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
944
+ # corresponds to doing no classifier free guidance.
945
+ @property
946
+ def do_classifier_free_guidance(self):
947
+ return self._guidance_scale > 1
948
+
949
+ @property
950
+ def cross_attention_kwargs(self):
951
+ return self._cross_attention_kwargs
952
+
953
+ @property
954
+ def num_timesteps(self):
955
+ return self._num_timesteps
956
+
957
+ @torch.no_grad()
958
+ def __call__(
959
+ self,
960
+ prompt: Union[str, List[str]] = None,
961
+ image: PipelineImageInput = None,
962
+ control_image: PipelineImageInput = None,
963
+ # garment_image: PipelineImageInput = None,
964
+ height: Optional[int] = None,
965
+ width: Optional[int] = None,
966
+ strength: float = 0.8,
967
+ num_inference_steps: int = 50,
968
+ guidance_scale: float = 5.0,
969
+ negative_prompt: Optional[Union[str, List[str]]] = None,
970
+ num_images_per_prompt: Optional[int] = 1,
971
+ eta: float = 0.0,
972
+ guess_mode: bool = False,
973
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
974
+ latents: Optional[torch.Tensor] = None,
975
+ prompt_embeds: Optional[torch.Tensor] = None,
976
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
977
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
978
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
979
+ ip_adapter_image: Optional[PipelineImageInput] = None,
980
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
981
+ face_crop_image: Optional[PipelineImageInput] = None,
982
+ face_insightface_embeds: Optional[torch.FloatTensor] = None,
983
+ output_type: Optional[str] = "pil",
984
+ return_dict: bool = True,
985
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
986
+ controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
987
+ control_guidance_start: Union[float, List[float]] = 0.0,
988
+ control_guidance_end: Union[float, List[float]] = 1.0,
989
+ original_size: Tuple[int, int] = None,
990
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
991
+ target_size: Tuple[int, int] = None,
992
+ clip_skip: Optional[int] = None,
993
+ callback_on_step_end: Optional[
994
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
995
+ ] = None,
996
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
997
+ **kwargs,
998
+ ):
999
+ r"""
1000
+ Function invoked when calling the pipeline for generation.
1001
+
1002
+ Args:
1003
+ prompt (`str` or `List[str]`, *optional*):
1004
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
1005
+ instead.
1006
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
1007
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
1008
+ The initial image will be used as the starting point for the image generation process. Can also accept
1009
+ image latents as `image`, if passing latents directly, it will not be encoded again.
1010
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
1011
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
1012
+ The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
1013
+ the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
1014
+ be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
1015
+ and/or width are passed, `image` is resized according to them. If multiple ControlNets are specified in
1016
+ init, images must be passed as a list such that each element of the list can be correctly batched for
1017
+ input to a single controlnet.
1018
+ height (`int`, *optional*, defaults to the size of control_image):
1019
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
1020
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1021
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1022
+ width (`int`, *optional*, defaults to the size of control_image):
1023
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
1024
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1025
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1026
+ strength (`float`, *optional*, defaults to 0.8):
1027
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
1028
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
1029
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
1030
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
1031
+ essentially ignores `image`.
1032
+ num_inference_steps (`int`, *optional*, defaults to 50):
1033
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1034
+ expense of slower inference.
1035
+ guidance_scale (`float`, *optional*, defaults to 7.5):
1036
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
1037
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
1038
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1039
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
1040
+ usually at the expense of lower image quality.
1041
+ negative_prompt (`str` or `List[str]`, *optional*):
1042
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
1043
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
1044
+ less than `1`).
1045
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1046
+ The number of images to generate per prompt.
1047
+ eta (`float`, *optional*, defaults to 0.0):
1048
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
1049
+ [`schedulers.DDIMScheduler`], will be ignored for others.
1050
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1051
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
1052
+ to make generation deterministic.
1053
+ latents (`torch.Tensor`, *optional*):
1054
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
1055
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1056
+ tensor will ge generated by sampling using the supplied random `generator`.
1057
+ prompt_embeds (`torch.Tensor`, *optional*):
1058
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
1059
+ provided, text embeddings will be generated from `prompt` input argument.
1060
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1061
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1062
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
1063
+ argument.
1064
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1065
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
1066
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
1067
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1068
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1069
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
1070
+ input argument.
1071
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1072
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1073
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1074
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1075
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1076
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1077
+ output_type (`str`, *optional*, defaults to `"pil"`):
1078
+ The output format of the generate image. Choose between
1079
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
1080
+ return_dict (`bool`, *optional*, defaults to `True`):
1081
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1082
+ plain tuple.
1083
+ cross_attention_kwargs (`dict`, *optional*):
1084
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1085
+ `self.processor` in
1086
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1087
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
1088
+ The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
1089
+ to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
1090
+ corresponding scale as a list.
1091
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
1092
+ The percentage of total steps at which the controlnet starts applying.
1093
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
1094
+ The percentage of total steps at which the controlnet stops applying.
1095
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1096
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1097
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1098
+ explained in section 2.2 of
1099
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1100
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1101
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1102
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1103
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1104
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1105
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1106
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1107
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1108
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1109
+ clip_skip (`int`, *optional*):
1110
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1111
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1112
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1113
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1114
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1115
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1116
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1117
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1118
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1119
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1120
+ `._callback_tensor_inputs` attribute of your pipeline class.
1121
+
1122
+ Examples:
1123
+
1124
+ Returns:
1125
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
1126
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
1127
+ containing the output images.
1128
+ """
1129
+
1130
+ callback = kwargs.pop("callback", None)
1131
+ callback_steps = kwargs.pop("callback_steps", None)
1132
+
1133
+ if callback is not None:
1134
+ deprecate(
1135
+ "callback",
1136
+ "1.0.0",
1137
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1138
+ )
1139
+ if callback_steps is not None:
1140
+ deprecate(
1141
+ "callback_steps",
1142
+ "1.0.0",
1143
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1144
+ )
1145
+
1146
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1147
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1148
+
1149
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1150
+
1151
+ # align format for control guidance
1152
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1153
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1154
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1155
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1156
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
1157
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1158
+ control_guidance_start, control_guidance_end = (
1159
+ mult * [control_guidance_start],
1160
+ mult * [control_guidance_end],
1161
+ )
1162
+
1163
+ # from IPython import embed; embed()
1164
+ # 1. Check inputs. Raise error if not correct
1165
+ self.check_inputs(
1166
+ prompt,
1167
+ control_image,
1168
+ strength,
1169
+ num_inference_steps,
1170
+ callback_steps,
1171
+ negative_prompt,
1172
+ prompt_embeds,
1173
+ negative_prompt_embeds,
1174
+ pooled_prompt_embeds,
1175
+ negative_pooled_prompt_embeds,
1176
+ ip_adapter_image,
1177
+ ip_adapter_image_embeds,
1178
+ controlnet_conditioning_scale,
1179
+ control_guidance_start,
1180
+ control_guidance_end,
1181
+ callback_on_step_end_tensor_inputs,
1182
+ )
1183
+
1184
+ self._guidance_scale = guidance_scale
1185
+ self._clip_skip = clip_skip
1186
+ self._cross_attention_kwargs = cross_attention_kwargs
1187
+
1188
+ # 2. Define call parameters
1189
+ if prompt is not None and isinstance(prompt, str):
1190
+ batch_size = 1
1191
+ elif prompt is not None and isinstance(prompt, list):
1192
+ batch_size = len(prompt)
1193
+ else:
1194
+ batch_size = prompt_embeds.shape[0]
1195
+
1196
+ device = self._execution_device
1197
+
1198
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
1199
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
1200
+
1201
+ # 3.1. Encode input prompt
1202
+ text_encoder_lora_scale = (
1203
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1204
+ )
1205
+ (
1206
+ prompt_embeds,
1207
+ negative_prompt_embeds,
1208
+ pooled_prompt_embeds,
1209
+ negative_pooled_prompt_embeds,
1210
+ ) = self.encode_prompt(
1211
+ prompt,
1212
+ device,
1213
+ num_images_per_prompt,
1214
+ self.do_classifier_free_guidance,
1215
+ negative_prompt,
1216
+ prompt_embeds=prompt_embeds,
1217
+ negative_prompt_embeds=negative_prompt_embeds,
1218
+ pooled_prompt_embeds=pooled_prompt_embeds,
1219
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1220
+ lora_scale=text_encoder_lora_scale,
1221
+ )
1222
+
1223
+ # 3.2 Encode ip_adapter_image
1224
+ # if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1225
+ # image_embeds = self.prepare_ip_adapter_image_embeds(
1226
+ # ip_adapter_image,
1227
+ # ip_adapter_image_embeds,
1228
+ # device,
1229
+ # batch_size * num_images_per_prompt,
1230
+ # self.do_classifier_free_guidance,
1231
+ # )
1232
+
1233
+ if face_crop_image is not None and face_insightface_embeds is not None:
1234
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_fused_face_embedds(
1235
+ face_insightface_embeds = face_insightface_embeds,
1236
+ face_crop_image = face_crop_image,
1237
+ num_images_per_prompt = num_images_per_prompt,
1238
+ device = device
1239
+ )
1240
+
1241
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
1242
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
1243
+
1244
+ # 4. Prepare image and controlnet_conditioning_image
1245
+ # image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
1246
+
1247
+ # garment_image = self.image_processor.preprocess(garment_image, height=height, width=width).to(dtype=torch.float32)
1248
+ # garment_image = garment_image.to(device=device)
1249
+ # make sure the VAE is in float32 mode, as it overflows in float16
1250
+ needs_upcasting = self.vae.dtype != torch.float32 and self.vae.config.force_upcast
1251
+
1252
+ if needs_upcasting:
1253
+ ori_dtype = self.vae.dtype
1254
+ self.upcast_vae()
1255
+
1256
+
1257
+ # garment_image = self.vae.encode(garment_image).latent_dist.sample()
1258
+ # garment_image = garment_image * self.vae.config.scaling_factor
1259
+ # garment_image = garment_image.to(dtype=prompt_embeds.dtype)
1260
+
1261
+ # cast back to fp16 if needed
1262
+ if needs_upcasting:
1263
+ self.vae.to(dtype=ori_dtype)
1264
+
1265
+ # if self.do_classifier_free_guidance:
1266
+ # garment_image = torch.cat([garment_image,torch.zeros_like(garment_image)])
1267
+ # garment_image = torch.cat([garment_image]*2)
1268
+ if isinstance(controlnet, ControlNetModel):
1269
+ control_image = self.prepare_control_image(
1270
+ image=control_image,
1271
+ width=width,
1272
+ height=height,
1273
+ batch_size=batch_size * num_images_per_prompt,
1274
+ num_images_per_prompt=num_images_per_prompt,
1275
+ device=device,
1276
+ dtype=controlnet.dtype,
1277
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1278
+ guess_mode=guess_mode,
1279
+ )
1280
+ height, width = control_image.shape[-2:]
1281
+ elif isinstance(controlnet, MultiControlNetModel):
1282
+ control_images = []
1283
+
1284
+ for control_image_ in control_image:
1285
+ control_image_ = self.prepare_control_image(
1286
+ image=control_image_,
1287
+ width=width,
1288
+ height=height,
1289
+ batch_size=batch_size * num_images_per_prompt,
1290
+ num_images_per_prompt=num_images_per_prompt,
1291
+ device=device,
1292
+ dtype=controlnet.dtype,
1293
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1294
+ guess_mode=guess_mode,
1295
+ )
1296
+
1297
+ control_images.append(control_image_)
1298
+
1299
+ control_image = control_images
1300
+ height, width = control_image[0].shape[-2:]
1301
+ else:
1302
+ assert False
1303
+
1304
+ # 5. Prepare timesteps
1305
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
1306
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
1307
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1308
+ self._num_timesteps = len(timesteps)
1309
+
1310
+ # 6. Prepare latent variables
1311
+
1312
+ num_channels_latents = self.unet.config.in_channels
1313
+ if latents is None:
1314
+ # if strength >= 1.0:
1315
+ # latents = self.prepare_latents_t2i(
1316
+ # batch_size * num_images_per_prompt,
1317
+ # num_channels_latents,
1318
+ # height,
1319
+ # width,
1320
+ # prompt_embeds.dtype,
1321
+ # device,
1322
+ # generator,
1323
+ # latents,
1324
+ # )
1325
+ # else:
1326
+ # latents = self.prepare_latents(
1327
+ # image,
1328
+ # latent_timestep,
1329
+ # batch_size,
1330
+ # num_images_per_prompt,
1331
+ # prompt_embeds.dtype,
1332
+ # device,
1333
+ # generator,
1334
+ # True,
1335
+ # )
1336
+ latents = self.prepare_latents_t2i(
1337
+ batch_size * num_images_per_prompt,
1338
+ num_channels_latents,
1339
+ height,
1340
+ width,
1341
+ prompt_embeds.dtype,
1342
+ device,
1343
+ generator,
1344
+ latents,
1345
+ )
1346
+
1347
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1348
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1349
+
1350
+ # 7.1 Create tensor stating which controlnets to keep
1351
+ controlnet_keep = []
1352
+ for i in range(len(timesteps)):
1353
+ keeps = [
1354
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1355
+ for s, e in zip(control_guidance_start, control_guidance_end)
1356
+ ]
1357
+ controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1358
+
1359
+ # 7.2 Prepare added time ids & embeddings
1360
+ if isinstance(control_image, list):
1361
+ original_size = original_size or control_image[0].shape[-2:]
1362
+ else:
1363
+ original_size = original_size or control_image.shape[-2:]
1364
+ target_size = target_size or (height, width)
1365
+
1366
+ # 7. Prepare added time ids & embeddings
1367
+ add_text_embeds = pooled_prompt_embeds
1368
+ add_time_ids = self._get_add_time_ids(
1369
+ original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
1370
+ )
1371
+
1372
+ if self.do_classifier_free_guidance:
1373
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1374
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1375
+ add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
1376
+
1377
+ prompt_embeds = prompt_embeds.to(device)
1378
+ add_text_embeds = add_text_embeds.to(device)
1379
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
1380
+
1381
+ # 8. Denoising loop
1382
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1383
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1384
+ for i, t in enumerate(timesteps):
1385
+ # expand the latents if we are doing classifier free guidance
1386
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1387
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1388
+
1389
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1390
+
1391
+ # controlnet(s) inference
1392
+ if guess_mode and self.do_classifier_free_guidance:
1393
+ # Infer ControlNet only for the conditional batch.
1394
+ control_model_input = latents
1395
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1396
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1397
+ controlnet_added_cond_kwargs = {
1398
+ "text_embeds": add_text_embeds.chunk(2)[1],
1399
+ "time_ids": add_time_ids.chunk(2)[1],
1400
+ }
1401
+ else:
1402
+ control_model_input = latent_model_input
1403
+ controlnet_prompt_embeds = prompt_embeds
1404
+ controlnet_added_cond_kwargs = added_cond_kwargs
1405
+
1406
+ if isinstance(controlnet_keep[i], list):
1407
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1408
+ else:
1409
+ controlnet_cond_scale = controlnet_conditioning_scale
1410
+ if isinstance(controlnet_cond_scale, list):
1411
+ controlnet_cond_scale = controlnet_cond_scale[0]
1412
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1413
+
1414
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1415
+ # torch.cat([control_model_input,garment_image],dim=1),
1416
+ control_model_input,
1417
+ t,
1418
+ encoder_hidden_states=controlnet_prompt_embeds,
1419
+ controlnet_cond=control_image,
1420
+ conditioning_scale=cond_scale,
1421
+ guess_mode=guess_mode,
1422
+ added_cond_kwargs=controlnet_added_cond_kwargs,
1423
+ return_dict=False,
1424
+ )
1425
+
1426
+ down_block_res_samples = [each.to(latent_model_input.dtype) for each in down_block_res_samples]
1427
+ mid_block_res_sample = mid_block_res_sample.to(latent_model_input.dtype)
1428
+
1429
+ if guess_mode and self.do_classifier_free_guidance:
1430
+ # Infered ControlNet only for the conditional batch.
1431
+ # To apply the output of ControlNet to both the unconditional and conditional batches,
1432
+ # add 0 to the unconditional batch to keep it unchanged.
1433
+ down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1434
+ mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1435
+
1436
+ # if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1437
+ # added_cond_kwargs["image_embeds"] = image_embeds
1438
+
1439
+ # predict the noise residual
1440
+ noise_pred = self.unet(
1441
+ latent_model_input,
1442
+ t,
1443
+ encoder_hidden_states=prompt_embeds,
1444
+ cross_attention_kwargs=self.cross_attention_kwargs,
1445
+ down_block_additional_residuals=down_block_res_samples,
1446
+ mid_block_additional_residual=mid_block_res_sample,
1447
+ added_cond_kwargs=added_cond_kwargs,
1448
+ return_dict=False,
1449
+ )[0]
1450
+
1451
+ # perform guidance
1452
+ if self.do_classifier_free_guidance:
1453
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1454
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1455
+
1456
+ # compute the previous noisy sample x_t -> x_t-1
1457
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1458
+
1459
+ # call the callback, if provided
1460
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1461
+ progress_bar.update()
1462
+ if callback is not None and i % callback_steps == 0:
1463
+ step_idx = i // getattr(self.scheduler, "order", 1)
1464
+ callback(step_idx, t, latents)
1465
+
1466
+ # If we do sequential model offloading, let's offload unet and controlnet
1467
+ # manually for max memory savings
1468
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1469
+ self.unet.to("cpu")
1470
+ self.controlnet.to("cpu")
1471
+ torch.cuda.empty_cache()
1472
+
1473
+ if not output_type == "latent":
1474
+ # make sure the VAE is in float32 mode, as it overflows in float16
1475
+ needs_upcasting = self.vae.dtype != torch.float32 and self.vae.config.force_upcast
1476
+
1477
+ if needs_upcasting:
1478
+ ori_dtype = self.vae.dtype
1479
+ self.upcast_vae()
1480
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1481
+
1482
+ latents = latents / self.vae.config.scaling_factor
1483
+
1484
+ image = self.vae.decode(latents, return_dict=False)[0]
1485
+
1486
+ # cast back to fp16 if needed
1487
+ if needs_upcasting:
1488
+ self.vae.to(dtype=ori_dtype)
1489
+ else:
1490
+ image = latents
1491
+ return StableDiffusionXLPipelineOutput(images=image)
1492
+
1493
+ image = self.image_processor.postprocess(image, output_type=output_type)
1494
+
1495
+ # Offload all models
1496
+ self.maybe_free_model_hooks()
1497
+
1498
+ if not return_dict:
1499
+ return (image,)
1500
+
1501
+ return StableDiffusionXLPipelineOutput(images=image)
1502
+
1503
+ def train_step(
1504
+ self,
1505
+ accelerator,
1506
+ optimizer,
1507
+ lr_scheduler,
1508
+ prompt: Union[str, List[str]] = None,
1509
+ control_image: PipelineImageInput = None,
1510
+ ori_image: Optional[PipelineImageInput] = None,
1511
+ height: Optional[int] = None,
1512
+ width: Optional[int] = None,
1513
+ guidance_scale: float = 5.0,
1514
+ negative_prompt: Optional[Union[str, List[str]]] = None,
1515
+ num_images_per_prompt: Optional[int] = 1,
1516
+ eta: float = 0.0,
1517
+ guess_mode: bool = False,
1518
+ latents: Optional[torch.Tensor] = None,
1519
+ prompt_embeds: Optional[torch.Tensor] = None,
1520
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
1521
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
1522
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
1523
+ face_crop_image: Optional[PipelineImageInput] = None,
1524
+ face_insightface_embeds: Optional[torch.FloatTensor] = None,
1525
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1526
+ controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
1527
+ control_guidance_start: Union[float, List[float]] = 0.0,
1528
+ control_guidance_end: Union[float, List[float]] = 1.0,
1529
+ original_size: Tuple[int, int] = None,
1530
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
1531
+ target_size: Tuple[int, int] = None,
1532
+ clip_skip: Optional[int] = None,
1533
+
1534
+ ):
1535
+ r"""
1536
+ Function invoked when calling the pipeline for generation.
1537
+
1538
+ Args:
1539
+ prompt (`str` or `List[str]`, *optional*):
1540
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
1541
+ instead.
1542
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
1543
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
1544
+ The initial image will be used as the starting point for the image generation process. Can also accept
1545
+ image latents as `image`, if passing latents directly, it will not be encoded again.
1546
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
1547
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
1548
+ The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
1549
+ the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
1550
+ be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
1551
+ and/or width are passed, `image` is resized according to them. If multiple ControlNets are specified in
1552
+ init, images must be passed as a list such that each element of the list can be correctly batched for
1553
+ input to a single controlnet.
1554
+ height (`int`, *optional*, defaults to the size of control_image):
1555
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
1556
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1557
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1558
+ width (`int`, *optional*, defaults to the size of control_image):
1559
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
1560
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1561
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1562
+ strength (`float`, *optional*, defaults to 0.8):
1563
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
1564
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
1565
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
1566
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
1567
+ essentially ignores `image`.
1568
+ num_inference_steps (`int`, *optional*, defaults to 50):
1569
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1570
+ expense of slower inference.
1571
+ guidance_scale (`float`, *optional*, defaults to 7.5):
1572
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
1573
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
1574
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1575
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
1576
+ usually at the expense of lower image quality.
1577
+ negative_prompt (`str` or `List[str]`, *optional*):
1578
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
1579
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
1580
+ less than `1`).
1581
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1582
+ The number of images to generate per prompt.
1583
+ eta (`float`, *optional*, defaults to 0.0):
1584
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
1585
+ [`schedulers.DDIMScheduler`], will be ignored for others.
1586
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1587
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
1588
+ to make generation deterministic.
1589
+ latents (`torch.Tensor`, *optional*):
1590
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
1591
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1592
+ tensor will ge generated by sampling using the supplied random `generator`.
1593
+ prompt_embeds (`torch.Tensor`, *optional*):
1594
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
1595
+ provided, text embeddings will be generated from `prompt` input argument.
1596
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1597
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1598
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
1599
+ argument.
1600
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1601
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
1602
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
1603
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1604
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1605
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
1606
+ input argument.
1607
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1608
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1609
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1610
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1611
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1612
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1613
+ output_type (`str`, *optional*, defaults to `"pil"`):
1614
+ The output format of the generate image. Choose between
1615
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
1616
+ return_dict (`bool`, *optional*, defaults to `True`):
1617
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1618
+ plain tuple.
1619
+ cross_attention_kwargs (`dict`, *optional*):
1620
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1621
+ `self.processor` in
1622
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1623
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
1624
+ The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
1625
+ to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
1626
+ corresponding scale as a list.
1627
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
1628
+ The percentage of total steps at which the controlnet starts applying.
1629
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
1630
+ The percentage of total steps at which the controlnet stops applying.
1631
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1632
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1633
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1634
+ explained in section 2.2 of
1635
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1636
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1637
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1638
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1639
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1640
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1641
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1642
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1643
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1644
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1645
+ clip_skip (`int`, *optional*):
1646
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1647
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1648
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1649
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1650
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1651
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1652
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1653
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1654
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1655
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1656
+ `._callback_tensor_inputs` attribute of your pipeline class.
1657
+
1658
+ Examples:
1659
+
1660
+ Returns:
1661
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
1662
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
1663
+ containing the output images.
1664
+ """
1665
+
1666
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1667
+
1668
+ # align format for control guidance
1669
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1670
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1671
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1672
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1673
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
1674
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1675
+ control_guidance_start, control_guidance_end = (
1676
+ mult * [control_guidance_start],
1677
+ mult * [control_guidance_end],
1678
+ )
1679
+
1680
+ self._guidance_scale = guidance_scale
1681
+ self._clip_skip = clip_skip
1682
+ self._cross_attention_kwargs = cross_attention_kwargs
1683
+
1684
+ # 2. Define call parameters
1685
+ if prompt is not None and isinstance(prompt, str):
1686
+ batch_size = 1
1687
+ elif prompt is not None and isinstance(prompt, list):
1688
+ batch_size = len(prompt)
1689
+ else:
1690
+ batch_size = prompt_embeds.shape[0]
1691
+
1692
+ device = self._execution_device
1693
+
1694
+ # 3.1. Encode input prompt
1695
+ text_encoder_lora_scale = (
1696
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1697
+ )
1698
+ (
1699
+ prompt_embeds,
1700
+ _,
1701
+ pooled_prompt_embeds,
1702
+ _,
1703
+ ) = self.encode_prompt(
1704
+ prompt,
1705
+ device,
1706
+ num_images_per_prompt,
1707
+ False,
1708
+ negative_prompt,
1709
+ prompt_embeds=prompt_embeds,
1710
+ negative_prompt_embeds=negative_prompt_embeds,
1711
+ pooled_prompt_embeds=pooled_prompt_embeds,
1712
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1713
+ lora_scale=text_encoder_lora_scale,
1714
+ )
1715
+
1716
+ # 3.2 Encode ip_adapter_image
1717
+ # if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1718
+ # image_embeds = self.prepare_ip_adapter_image_embeds(
1719
+ # ip_adapter_image,
1720
+ # ip_adapter_image_embeds,
1721
+ # device,
1722
+ # batch_size * num_images_per_prompt,
1723
+ # self.do_classifier_free_guidance,
1724
+ # )
1725
+
1726
+ if face_crop_image is not None and face_insightface_embeds is not None:
1727
+ ##### prepare fused face embeds
1728
+ image_prompt_embeds = []
1729
+ for crop_image,face_embed in zip(face_crop_image,face_insightface_embeds):
1730
+ image_prompt_embed, _ = self.get_fused_face_embedds(
1731
+ face_insightface_embeds = face_embed,
1732
+ face_crop_image = crop_image,
1733
+ num_images_per_prompt = num_images_per_prompt,
1734
+ device = device
1735
+ )
1736
+ image_prompt_embeds.append(image_prompt_embed)
1737
+ prompt_embeds = torch.cat([prompt_embeds, torch.cat(image_prompt_embeds)], dim=1)
1738
+ # negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
1739
+
1740
+ # 4. Prepare image and controlnet_conditioning_image
1741
+ # image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
1742
+ ori_image = self.image_processor.preprocess(ori_image, height=height, width=width).to(dtype=torch.float32)
1743
+ ori_image = ori_image.to(device=device)
1744
+ # make sure the VAE is in float32 mode, as it overflows in float16
1745
+
1746
+ needs_upcasting = self.vae.dtype != torch.float32 and self.vae.config.force_upcast
1747
+
1748
+ if needs_upcasting:
1749
+ ori_dtype = self.vae.dtype
1750
+ self.upcast_vae()
1751
+
1752
+ ori_image = self.vae.encode(ori_image).latent_dist.sample()
1753
+ ori_image = ori_image * self.vae.config.scaling_factor
1754
+ ori_image = ori_image.to(dtype=prompt_embeds.dtype)
1755
+
1756
+ if needs_upcasting:
1757
+ self.vae.to(dtype=ori_dtype)
1758
+
1759
+ noise = torch.randn_like(ori_image)
1760
+
1761
+ timesteps = torch.randint(
1762
+ 0, self.scheduler.config.num_train_timesteps, (batch_size,), device=device,dtype=torch.int64)
1763
+
1764
+ noisy_latents = self.scheduler.add_noise(ori_image, noise, timesteps)
1765
+ latent_model_input = noisy_latents
1766
+
1767
+ if isinstance(controlnet, ControlNetModel):
1768
+ control_image = self.prepare_control_image(
1769
+ image=control_image,
1770
+ width=width,
1771
+ height=height,
1772
+ batch_size=batch_size * num_images_per_prompt,
1773
+ num_images_per_prompt=num_images_per_prompt,
1774
+ device=device,
1775
+ dtype=controlnet.dtype,
1776
+ do_classifier_free_guidance=False,
1777
+ guess_mode=guess_mode,
1778
+ )
1779
+ height, width = control_image.shape[-2:]
1780
+
1781
+
1782
+ # 7.1 Create tensor stating which controlnets to keep
1783
+ # controlnet_keep = []
1784
+ # for i in range(len(timesteps)):
1785
+ # keeps = [
1786
+ # 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1787
+ # for s, e in zip(control_guidance_start, control_guidance_end)
1788
+ # ]
1789
+ # controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1790
+
1791
+ # 7.2 Prepare added time ids & embeddings
1792
+ if isinstance(control_image, list):
1793
+ original_size = original_size or control_image[0].shape[-2:]
1794
+ else:
1795
+ original_size = original_size or control_image.shape[-2:]
1796
+ target_size = target_size or (height, width)
1797
+
1798
+ # 7. Prepare added time ids & embeddings
1799
+ add_text_embeds = pooled_prompt_embeds
1800
+ add_time_ids = self._get_add_time_ids(
1801
+ original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
1802
+ )
1803
+
1804
+ prompt_embeds = prompt_embeds.to(device)
1805
+ add_text_embeds = add_text_embeds.to(device)
1806
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
1807
+
1808
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1809
+
1810
+
1811
+ control_model_input = latent_model_input
1812
+ controlnet_prompt_embeds = prompt_embeds
1813
+ controlnet_added_cond_kwargs = added_cond_kwargs
1814
+
1815
+ # if isinstance(controlnet_keep[i], list):
1816
+ # cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1817
+ # else:
1818
+ # controlnet_cond_scale = controlnet_conditioning_scale
1819
+ # if isinstance(controlnet_cond_scale, list):
1820
+ # controlnet_cond_scale = controlnet_cond_scale[0]
1821
+ # cond_scale = controlnet_cond_scale * controlnet_keep[i]
1822
+
1823
+ with accelerator.accumulate(self.controlnet):
1824
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1825
+ control_model_input,
1826
+ timesteps,
1827
+ encoder_hidden_states=controlnet_prompt_embeds,
1828
+ controlnet_cond=control_image,
1829
+ conditioning_scale=1.0,
1830
+ guess_mode=guess_mode,
1831
+ added_cond_kwargs=controlnet_added_cond_kwargs,
1832
+ return_dict=False,
1833
+ )
1834
+
1835
+ down_block_res_samples = [each.to(latent_model_input.dtype) for each in down_block_res_samples]
1836
+ mid_block_res_sample = mid_block_res_sample.to(latent_model_input.dtype)
1837
+
1838
+ noise_pred = self.unet(
1839
+ latent_model_input,
1840
+ timesteps,
1841
+ encoder_hidden_states=prompt_embeds,
1842
+ cross_attention_kwargs=self.cross_attention_kwargs,
1843
+ down_block_additional_residuals=down_block_res_samples,
1844
+ mid_block_additional_residual=mid_block_res_sample,
1845
+ added_cond_kwargs=added_cond_kwargs,
1846
+ return_dict=False,
1847
+ )[0]
1848
+ loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
1849
+ accelerator.backward(loss)
1850
+ accelerator.clip_grad_norm_(self.controlnet.parameters(), 1.0)
1851
+ optimizer.step()
1852
+ lr_scheduler.step()
1853
+ optimizer.zero_grad()
1854
+
1855
+ return loss
1856
+