Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,154 +1,209 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
torch_dtype = torch.float16
|
| 14 |
-
else:
|
| 15 |
-
torch_dtype = torch.float32
|
| 16 |
-
|
| 17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 18 |
-
pipe = pipe.to(device)
|
| 19 |
-
|
| 20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
-
MAX_IMAGE_SIZE = 1024
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
| 25 |
-
def infer(
|
| 26 |
-
prompt,
|
| 27 |
-
negative_prompt,
|
| 28 |
-
seed,
|
| 29 |
-
randomize_seed,
|
| 30 |
-
width,
|
| 31 |
-
height,
|
| 32 |
-
guidance_scale,
|
| 33 |
-
num_inference_steps,
|
| 34 |
-
progress=gr.Progress(track_tqdm=True),
|
| 35 |
-
):
|
| 36 |
-
if randomize_seed:
|
| 37 |
-
seed = random.randint(0, MAX_SEED)
|
| 38 |
|
| 39 |
-
|
|
|
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
image = pipe(
|
| 42 |
-
prompt=prompt,
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
generator=generator,
|
| 49 |
-
).images
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
maximum=10.0,
|
| 124 |
-
step=0.1,
|
| 125 |
-
value=0.0, # Replace with defaults that work for your model
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
num_inference_steps = gr.Slider(
|
| 129 |
-
label="Number of inference steps",
|
| 130 |
-
minimum=1,
|
| 131 |
-
maximum=50,
|
| 132 |
-
step=1,
|
| 133 |
-
value=2, # Replace with defaults that work for your model
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
| 137 |
-
gr.on(
|
| 138 |
-
triggers=[run_button.click, prompt.submit],
|
| 139 |
-
fn=infer,
|
| 140 |
-
inputs=[
|
| 141 |
-
prompt,
|
| 142 |
-
negative_prompt,
|
| 143 |
-
seed,
|
| 144 |
-
randomize_seed,
|
| 145 |
-
width,
|
| 146 |
-
height,
|
| 147 |
-
guidance_scale,
|
| 148 |
-
num_inference_steps,
|
| 149 |
-
],
|
| 150 |
-
outputs=[result, seed],
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
if __name__ == "__main__":
|
| 154 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
|
| 3 |
+
from diffusers.utils import load_image
|
| 4 |
+
import os,sys
|
| 5 |
+
import gradio as gr
|
| 6 |
|
| 7 |
+
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img_face import StableDiffusionXLControlNetImg2ImgPipeline
|
| 8 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
| 9 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
| 10 |
+
from kolors.models.controlnet import ControlNetModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
from diffusers import AutoencoderKL
|
| 13 |
+
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
| 14 |
|
| 15 |
+
from diffusers import EulerDiscreteScheduler
|
| 16 |
+
from PIL import Image
|
| 17 |
+
import numpy as np
|
| 18 |
+
import cv2
|
| 19 |
+
from insightface.app import FaceAnalysis
|
| 20 |
+
from insightface.data import get_image as ins_get_image
|
| 21 |
+
|
| 22 |
+
example_path = os.path.join(os.path.dirname(__file__), 'examples')
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class FaceInfoGenerator():
|
| 26 |
+
def __init__(self, root_dir = "./"):
|
| 27 |
+
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 28 |
+
self.app.prepare(ctx_id = 0, det_size = (640, 640))
|
| 29 |
+
|
| 30 |
+
def get_faceinfo_one_img(self, face_image):
|
| 31 |
+
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 32 |
+
|
| 33 |
+
if len(face_info) == 0:
|
| 34 |
+
face_info = None
|
| 35 |
+
else:
|
| 36 |
+
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
|
| 37 |
+
return face_info
|
| 38 |
+
|
| 39 |
+
def face_bbox_to_square(bbox):
|
| 40 |
+
## l, t, r, b to square l, t, r, b
|
| 41 |
+
l,t,r,b = bbox
|
| 42 |
+
cent_x = (l + r) / 2
|
| 43 |
+
cent_y = (t + b) / 2
|
| 44 |
+
w, h = r - l, b - t
|
| 45 |
+
r = max(w, h) / 2
|
| 46 |
+
|
| 47 |
+
l0 = cent_x - r
|
| 48 |
+
r0 = cent_x + r
|
| 49 |
+
t0 = cent_y - r
|
| 50 |
+
b0 = cent_y + r
|
| 51 |
+
|
| 52 |
+
return [l0, t0, r0, b0]
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
ckpt_dir = f'weights/Kolors'
|
| 56 |
+
text_encoder = ChatGLMModel.from_pretrained(
|
| 57 |
+
f'{ckpt_dir}/text_encoder').to(dtype=torch.bfloat16)
|
| 58 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
| 59 |
+
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).to(dtype=torch.bfloat16)
|
| 60 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
| 61 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).to(dtype=torch.bfloat16)
|
| 62 |
+
|
| 63 |
+
control_path = f'weights/Kolors-Controlnet-Pose-Tryon'
|
| 64 |
+
controlnet = ControlNetModel.from_pretrained( control_path , revision=None).to(dtype=torch.bfloat16)
|
| 65 |
+
|
| 66 |
+
face_info_generator = FaceInfoGenerator(root_dir = "./")
|
| 67 |
+
|
| 68 |
+
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'weights/Kolors-IP-Adapter-FaceID-Plus/clip-vit-large-patch14-336', ignore_mismatched_sizes=True)
|
| 69 |
+
clip_image_encoder.to('cuda')
|
| 70 |
+
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336)
|
| 71 |
+
|
| 72 |
+
pipe = StableDiffusionXLControlNetImg2ImgPipeline(
|
| 73 |
+
vae=vae,
|
| 74 |
+
controlnet = controlnet,
|
| 75 |
+
text_encoder=text_encoder,
|
| 76 |
+
tokenizer=tokenizer,
|
| 77 |
+
unet=unet,
|
| 78 |
+
scheduler=scheduler,
|
| 79 |
+
# image_encoder=image_encoder,
|
| 80 |
+
# feature_extractor=clip_image_processor,
|
| 81 |
+
force_zeros_for_empty_prompt=False,
|
| 82 |
+
face_clip_encoder=clip_image_encoder,
|
| 83 |
+
face_clip_processor=clip_image_processor,
|
| 84 |
+
)
|
| 85 |
+
if hasattr(pipe.unet, 'encoder_hid_proj'):
|
| 86 |
+
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
|
| 87 |
+
ip_scale = 0.5
|
| 88 |
+
pipe.load_ip_adapter_faceid_plus(f'weights/Kolors-IP-Adapter-FaceID-Plus/ipa-faceid-plus.bin', device = 'cuda')
|
| 89 |
+
pipe.set_face_fidelity_scale(ip_scale)
|
| 90 |
+
pipe = pipe.to("cuda")
|
| 91 |
+
pipe.enable_model_cpu_offload()
|
| 92 |
+
|
| 93 |
+
def infer(face_img,pose_img, garm_img, prompt,negative_prompt, n_samples, n_steps, seed):
|
| 94 |
+
face_img = Image.open(face_img)
|
| 95 |
+
pose_img = Image.open(pose_img)
|
| 96 |
+
garm_img = Image.open(garm_img)
|
| 97 |
+
face_img = face_img.resize((336, 336))
|
| 98 |
+
pose_img = pose_img.resize((768, 1024))
|
| 99 |
+
garm_img = garm_img.resize((768, 1024))
|
| 100 |
+
|
| 101 |
+
background = Image.new("RGB", (768, 768), (255, 255, 255))
|
| 102 |
+
#将face_img粘贴到background中心
|
| 103 |
+
background.paste(face_img, (int((768 - 336) / 2), int((768 - 336) / 2)))
|
| 104 |
+
|
| 105 |
+
face_info = face_info_generator.get_faceinfo_one_img(background)
|
| 106 |
+
|
| 107 |
+
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
|
| 108 |
+
face_embeds = face_embeds.to('cuda', dtype = torch.bfloat16)
|
| 109 |
+
|
| 110 |
+
controlnet_conditioning_scale = 1.0
|
| 111 |
+
control_guidance_end = 0.9
|
| 112 |
+
#strength 越是小,则生成图片越是依赖原始图片。
|
| 113 |
+
strength = 1.0
|
| 114 |
+
|
| 115 |
+
im1 = np.array(pose_img)
|
| 116 |
+
im2 = np.array(garm_img)
|
| 117 |
+
|
| 118 |
+
condi_img = Image.fromarray( np.concatenate( (im1, im2), axis=1 ) )
|
| 119 |
+
|
| 120 |
+
generator = torch.Generator(device="cpu").manual_seed(seed)
|
| 121 |
image = pipe(
|
| 122 |
+
prompt= prompt ,
|
| 123 |
+
# image = init_image,
|
| 124 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale,
|
| 125 |
+
control_guidance_end = control_guidance_end,
|
| 126 |
+
# ip_adapter_image=[ ip_adapter_img ],
|
| 127 |
+
face_crop_image = face_img,
|
| 128 |
+
face_insightface_embeds = face_embeds,
|
| 129 |
+
strength= strength ,
|
| 130 |
+
control_image = condi_img,
|
| 131 |
+
negative_prompt= negative_prompt ,
|
| 132 |
+
num_inference_steps=n_steps ,
|
| 133 |
+
guidance_scale= 5.0,
|
| 134 |
+
num_images_per_prompt=n_samples,
|
| 135 |
generator=generator,
|
| 136 |
+
).images
|
| 137 |
+
return image
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
block = gr.Blocks().queue()
|
| 141 |
+
with block:
|
| 142 |
+
with gr.Row():
|
| 143 |
+
gr.Markdown("# KolorsControlnerTryon Demo")
|
| 144 |
+
with gr.Row():
|
| 145 |
+
with gr.Column():
|
| 146 |
+
pose_img = gr.Image(label="Pose", sources='upload', type="filepath", height=768, value=os.path.join(example_path, 'pose/1.jpg'))
|
| 147 |
+
example = gr.Examples(
|
| 148 |
+
inputs=pose_img,
|
| 149 |
+
examples_per_page=10,
|
| 150 |
+
examples=[
|
| 151 |
+
os.path.join(example_path, 'pose/1.jpg'),
|
| 152 |
+
os.path.join(example_path, 'pose/2.jpg'),
|
| 153 |
+
os.path.join(example_path, 'pose/3.jpg'),
|
| 154 |
+
os.path.join(example_path, 'pose/4.jpg'),
|
| 155 |
+
os.path.join(example_path, 'pose/5.jpg'),
|
| 156 |
+
os.path.join(example_path, 'pose/6.jpg'),
|
| 157 |
+
os.path.join(example_path, 'pose/7.jpg'),
|
| 158 |
+
os.path.join(example_path, 'pose/8.jpg'),
|
| 159 |
+
os.path.join(example_path, 'pose/9.jpg'),
|
| 160 |
+
os.path.join(example_path, 'pose/10.jpg'),
|
| 161 |
+
])
|
| 162 |
+
with gr.Column():
|
| 163 |
+
garm_img = gr.Image(label="Garment", sources='upload', type="filepath", height=768, value=os.path.join(example_path, 'garment/1.jpg'),)
|
| 164 |
+
example = gr.Examples(
|
| 165 |
+
inputs=garm_img,
|
| 166 |
+
examples_per_page=10,
|
| 167 |
+
examples=[
|
| 168 |
+
os.path.join(example_path, 'garment/1.jpg'),
|
| 169 |
+
os.path.join(example_path, 'garment/2.jpg'),
|
| 170 |
+
os.path.join(example_path, 'garment/3.jpg'),
|
| 171 |
+
os.path.join(example_path, 'garment/4.jpg'),
|
| 172 |
+
os.path.join(example_path, 'garment/5.jpg'),
|
| 173 |
+
os.path.join(example_path, 'garment/6.jpg'),
|
| 174 |
+
os.path.join(example_path, 'garment/7.jpg'),
|
| 175 |
+
os.path.join(example_path, 'garment/8.jpg'),
|
| 176 |
+
os.path.join(example_path, 'garment/9.jpg'),
|
| 177 |
+
os.path.join(example_path, 'garment/10.jpg'),
|
| 178 |
+
])
|
| 179 |
+
with gr.Row():
|
| 180 |
+
with gr.Column():
|
| 181 |
+
face_img = gr.Image(label="Face", sources='upload', type="filepath", height=336, value=os.path.join(example_path, 'face/1.png'),)
|
| 182 |
+
example = gr.Examples(
|
| 183 |
+
inputs=face_img,
|
| 184 |
+
examples_per_page=10,
|
| 185 |
+
examples=[
|
| 186 |
+
os.path.join(example_path, 'face/1.png'),
|
| 187 |
+
os.path.join(example_path, 'face/2.png'),
|
| 188 |
+
os.path.join(example_path, 'face/3.png'),
|
| 189 |
+
os.path.join(example_path, 'face/4.png'),
|
| 190 |
+
os.path.join(example_path, 'face/5.png'),
|
| 191 |
+
os.path.join(example_path, 'face/6.png'),
|
| 192 |
+
os.path.join(example_path, 'face/7.png'),
|
| 193 |
+
os.path.join(example_path, 'face/8.png'),
|
| 194 |
+
os.path.join(example_path, 'face/9.png'),
|
| 195 |
+
os.path.join(example_path, 'face/10.png'),
|
| 196 |
+
])
|
| 197 |
+
with gr.Column():
|
| 198 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
|
| 199 |
+
with gr.Column():
|
| 200 |
+
prompt = gr.Textbox(value="这张图片上的模特穿着一件黑色的长袖T恤,T恤上印着彩色的字母'OBEY'。她还穿着一条牛仔裤。", show_label=False, elem_id="prompt")
|
| 201 |
+
negative_prompt = gr.Textbox(value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯", show_label=False, elem_id="negative_prompt")
|
| 202 |
+
n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
|
| 203 |
+
n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
|
| 204 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
|
| 205 |
+
run_button = gr.Button(value="Run")
|
| 206 |
+
ips = [face_img,pose_img, garm_img, prompt,negative_prompt, n_samples, n_steps, seed]
|
| 207 |
+
run_button.click(fn=infer, inputs=ips, outputs=[result_gallery])
|
| 208 |
+
|
| 209 |
+
block.launch(server_name='0.0.0.0', server_port=7865)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|