|
import torch |
|
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor |
|
from diffusers.utils import load_image |
|
import os,sys |
|
import gradio as gr |
|
|
|
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img_face import StableDiffusionXLControlNetImg2ImgPipeline |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
from kolors.models.controlnet import ControlNetModel |
|
|
|
from diffusers import AutoencoderKL |
|
from kolors.models.unet_2d_condition import UNet2DConditionModel |
|
|
|
from diffusers import EulerDiscreteScheduler |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
from insightface.app import FaceAnalysis |
|
from insightface.data import get_image as ins_get_image |
|
|
|
example_path = os.path.join(os.path.dirname(__file__), 'examples') |
|
|
|
|
|
class FaceInfoGenerator(): |
|
def __init__(self, root_dir = "./"): |
|
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
self.app.prepare(ctx_id = 0, det_size = (640, 640)) |
|
|
|
def get_faceinfo_one_img(self, face_image): |
|
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) |
|
|
|
if len(face_info) == 0: |
|
face_info = None |
|
else: |
|
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] |
|
return face_info |
|
|
|
def face_bbox_to_square(bbox): |
|
|
|
l,t,r,b = bbox |
|
cent_x = (l + r) / 2 |
|
cent_y = (t + b) / 2 |
|
w, h = r - l, b - t |
|
r = max(w, h) / 2 |
|
|
|
l0 = cent_x - r |
|
r0 = cent_x + r |
|
t0 = cent_y - r |
|
b0 = cent_y + r |
|
|
|
return [l0, t0, r0, b0] |
|
|
|
|
|
text_encoder = ChatGLMModel.from_pretrained("Kwai-Kolors/Kolors",subfolder="text_encoder").to(dtype=torch.bfloat16) |
|
tokenizer = ChatGLMTokenizer.from_pretrained("Kwai-Kolors/Kolors",subfolder="text_encoder") |
|
vae = AutoencoderKL.from_pretrained("Kwai-Kolors/Kolors",subfolder="vae", revision=None).to(dtype=torch.bfloat16) |
|
scheduler = EulerDiscreteScheduler.from_pretrained("Kwai-Kolors/Kolors",subfolder="scheduler") |
|
unet = UNet2DConditionModel.from_pretrained("Kwai-Kolors/Kolors",subfolder="unet", revision=None).to(dtype=torch.bfloat16) |
|
|
|
control_path = "haowu11/Kolors-Controlnet-Pose-Tryon" |
|
controlnet = ControlNetModel.from_pretrained( control_path , revision=None).to(dtype=torch.bfloat16) |
|
|
|
face_info_generator = FaceInfoGenerator(root_dir = "./") |
|
|
|
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained("Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus",cache_dir='./',subfolder="clip-vit-large-patch14-336", ignore_mismatched_sizes=True) |
|
clip_image_encoder.to('cuda') |
|
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336) |
|
|
|
pipe = StableDiffusionXLControlNetImg2ImgPipeline( |
|
vae=vae, |
|
controlnet = controlnet, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
|
|
|
|
force_zeros_for_empty_prompt=False, |
|
face_clip_encoder=clip_image_encoder, |
|
face_clip_processor=clip_image_processor, |
|
) |
|
if hasattr(pipe.unet, 'encoder_hid_proj'): |
|
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj |
|
ip_scale = 0.5 |
|
pipe.load_ip_adapter_faceid_plus('ipa-faceid-plus.bin', device = 'cuda') |
|
pipe.set_face_fidelity_scale(ip_scale) |
|
pipe = pipe.to("cuda") |
|
pipe.enable_model_cpu_offload() |
|
|
|
def infer(face_img,pose_img, garm_img, prompt,negative_prompt, n_samples, n_steps, seed): |
|
face_img = Image.open(face_img) |
|
pose_img = Image.open(pose_img) |
|
garm_img = Image.open(garm_img) |
|
face_img = face_img.resize((336, 336)) |
|
pose_img = pose_img.resize((768, 1024)) |
|
garm_img = garm_img.resize((768, 1024)) |
|
|
|
background = Image.new("RGB", (768, 768), (255, 255, 255)) |
|
|
|
background.paste(face_img, (int((768 - 336) / 2), int((768 - 336) / 2))) |
|
|
|
face_info = face_info_generator.get_faceinfo_one_img(background) |
|
|
|
face_embeds = torch.from_numpy(np.array([face_info["embedding"]])) |
|
face_embeds = face_embeds.to('cuda', dtype = torch.bfloat16) |
|
|
|
controlnet_conditioning_scale = 1.0 |
|
control_guidance_end = 0.9 |
|
|
|
strength = 1.0 |
|
|
|
im1 = np.array(pose_img) |
|
im2 = np.array(garm_img) |
|
|
|
condi_img = Image.fromarray( np.concatenate( (im1, im2), axis=1 ) ) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
image = pipe( |
|
prompt= prompt , |
|
|
|
controlnet_conditioning_scale = controlnet_conditioning_scale, |
|
control_guidance_end = control_guidance_end, |
|
|
|
face_crop_image = face_img, |
|
face_insightface_embeds = face_embeds, |
|
strength= strength , |
|
control_image = condi_img, |
|
negative_prompt= negative_prompt , |
|
num_inference_steps=n_steps , |
|
guidance_scale= 5.0, |
|
num_images_per_prompt=n_samples, |
|
generator=generator, |
|
).images |
|
return image |
|
|
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown("# KolorsControlnerTryon Demo") |
|
with gr.Row(): |
|
with gr.Column(): |
|
pose_img = gr.Image(label="Pose", sources='upload', type="filepath", height=768, value=os.path.join(example_path, 'pose/1.jpg')) |
|
example = gr.Examples( |
|
inputs=pose_img, |
|
examples_per_page=10, |
|
examples=[ |
|
os.path.join(example_path, 'pose/1.jpg'), |
|
os.path.join(example_path, 'pose/2.jpg'), |
|
os.path.join(example_path, 'pose/3.jpg'), |
|
os.path.join(example_path, 'pose/4.jpg'), |
|
os.path.join(example_path, 'pose/5.jpg'), |
|
os.path.join(example_path, 'pose/6.jpg'), |
|
os.path.join(example_path, 'pose/7.jpg'), |
|
os.path.join(example_path, 'pose/8.jpg'), |
|
os.path.join(example_path, 'pose/9.jpg'), |
|
os.path.join(example_path, 'pose/10.jpg'), |
|
]) |
|
with gr.Column(): |
|
garm_img = gr.Image(label="Garment", sources='upload', type="filepath", height=768, value=os.path.join(example_path, 'garment/1.jpg'),) |
|
example = gr.Examples( |
|
inputs=garm_img, |
|
examples_per_page=10, |
|
examples=[ |
|
os.path.join(example_path, 'garment/1.jpg'), |
|
os.path.join(example_path, 'garment/2.jpg'), |
|
os.path.join(example_path, 'garment/3.jpg'), |
|
os.path.join(example_path, 'garment/4.jpg'), |
|
os.path.join(example_path, 'garment/5.jpg'), |
|
os.path.join(example_path, 'garment/6.jpg'), |
|
os.path.join(example_path, 'garment/7.jpg'), |
|
os.path.join(example_path, 'garment/8.jpg'), |
|
os.path.join(example_path, 'garment/9.jpg'), |
|
os.path.join(example_path, 'garment/10.jpg'), |
|
]) |
|
with gr.Row(): |
|
with gr.Column(): |
|
face_img = gr.Image(label="Face", sources='upload', type="filepath", height=336, value=os.path.join(example_path, 'face/1.png'),) |
|
example = gr.Examples( |
|
inputs=face_img, |
|
examples_per_page=10, |
|
examples=[ |
|
os.path.join(example_path, 'face/1.png'), |
|
os.path.join(example_path, 'face/2.png'), |
|
os.path.join(example_path, 'face/3.png'), |
|
os.path.join(example_path, 'face/4.png'), |
|
os.path.join(example_path, 'face/5.png'), |
|
os.path.join(example_path, 'face/6.png'), |
|
os.path.join(example_path, 'face/7.png'), |
|
os.path.join(example_path, 'face/8.png'), |
|
os.path.join(example_path, 'face/9.png'), |
|
os.path.join(example_path, 'face/10.png'), |
|
]) |
|
with gr.Column(): |
|
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1) |
|
with gr.Column(): |
|
prompt = gr.Textbox(value="这张图片上的模特穿着一件黑色的长袖T恤,T恤上印着彩色的字母'OBEY'。她还穿着一条牛仔裤。", show_label=False, elem_id="prompt") |
|
negative_prompt = gr.Textbox(value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯", show_label=False, elem_id="negative_prompt") |
|
n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1) |
|
n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1) |
|
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1) |
|
run_button = gr.Button(value="Run") |
|
ips = [face_img,pose_img, garm_img, prompt,negative_prompt, n_samples, n_steps, seed] |
|
run_button.click(fn=infer, inputs=ips, outputs=[result_gallery]) |
|
if __name__ == "__main__": |
|
block.launch(server_name='0.0.0.0') |