File size: 6,160 Bytes
41ceddd 33d62f7 83dc4c8 541c07d c55c219 41ceddd 39711bd c55c219 41ceddd c55c219 83dc4c8 39711bd 83dc4c8 39711bd 4e9d8a1 541c07d bdab1da 858c11b 4eab478 858c11b 4eab478 858c11b c55c219 858c11b c55c219 4e9d8a1 c55c219 858c11b 541c07d 4e9d8a1 858c11b 541c07d 858c11b 541c07d 858c11b 541c07d 4e9d8a1 83dc4c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import gradio as gr
import numpy as np
from audioldm import text_to_audio, build_model
from share_btn import community_icon_html, loading_icon_html, share_js
# from transformers import AutoModelForCausalLM, AutoTokenizer
# import torch
# tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
# model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
audioldm = build_model()
# audioldm=None
# def predict(input, history=[]):
# # tokenize the new input sentence
# new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# # append the new user input tokens to the chat history
# bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# # generate a response
# history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
# # convert the tokens to text, and then split the responses into lines
# response = tokenizer.decode(history[0]).split("<|endoftext|>")
# response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
# return response, history
def text2audio(text, duration, guidance_scale, random_seed, n_candidates):
# print(text, length, guidance_scale)
waveform = text_to_audio(audioldm, text, random_seed, duration=duration, guidance_scale=guidance_scale, n_candidate_gen_per_text=int(n_candidates)) # [bs, 1, samples]
waveform = [(16000, wave[0]) for wave in waveform]
# waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))]
if(len(waveform) == 1):
waveform = waveform[0]
return waveform # ,gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
# iface = gr.Interface(fn=text2audio, inputs=[
# gr.Textbox(value="A man is speaking in a huge room", max_lines=1),
# gr.Slider(2.5, 10, value=5, step=2.5),
# gr.Slider(0, 5, value=2.5, step=0.5),
# gr.Number(value=42)
# ], outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")],
# allow_flagging="never"
# )
# iface.launch(share=True)
iface = gr.Blocks()
with iface:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Text-to-Audio Generation with AudioLDM
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
<a href="https://arxiv.org/abs/2301.12503">[Paper]</a> <a href="https://audioldm.github.io/">[Project page]</a>
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
############# Input
textbox = gr.Textbox(value="A hammer is hitting a wooden surface", max_lines=1)
with gr.Accordion("Click to modify detailed configurations", open=False):
seed = gr.Number(value=42, label="Change this value (any integer number) will lead to a different generation result.")
duration = gr.Slider(2.5, 10, value=5, step=2.5, label="Duration (seconds)")
guidance_scale = gr.Slider(0, 5, value=2.5, step=0.5, label="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)")
n_candidates = gr.Slider(1, 5, value=3, step=1, label="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation")
############# Output
outputs=gr.Audio(label="Output", type="numpy")
# with gr.Group(elem_id="container-advanced-btns"):
# advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
# with gr.Group(elem_id="share-btn-container"):
# community_icon = gr.HTML(community_icon_html, visible=False)
# loading_icon = gr.HTML(loading_icon_html, visible=False)
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
# outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")]
btn = gr.Button("Submit").style(full_width=True)
btn.click(text2audio, inputs=[textbox, duration, guidance_scale, seed, n_candidates], outputs=[outputs]) # , share_button, community_icon, loading_icon
# advanced_button.click(None, [], [], _js=share_js)
gr.HTML('''
<hr>
<div class="footer" style="text-align: center; max-width: 700px; margin: 0 auto;">
<p>Model by <a href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe Liu</a>
</p>
</div>
''')
with gr.Accordion("Additional information", open=False):
gr.HTML(
"""
<div class="acknowledgments">
<p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>, <a href="https://freesound.org/">Freesound</a> and <a href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo based on the <a href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK copyright exception</a> of data for academic research. </p>
<p>This demo is strictly for research demo purpose only. For commercial use please <a href="[email protected]">contact us</a>.</p>
</div>
"""
)
iface.queue(concurrency_count = 2)
iface.launch(debug=True)
# iface.launch(debug=True, share=True) |