Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import pipeline | |
import torch | |
import os | |
import spaces | |
hf_token = os.environ["HF_TOKEN"] | |
# Load the Gemma 3 pipeline. | |
pipe = pipeline( | |
"image-text-to-text", | |
model="google/gemma-3-4b-it", | |
device="cuda", | |
torch_dtype=torch.bfloat16, | |
use_auth_token=hf_token | |
) | |
def generate_response(user_text, user_image): | |
# Check if an image was uploaded. | |
if user_image is None: | |
return "Error: An image upload is mandatory." | |
# Prepare messages with the system prompt and user inputs. | |
messages = [ | |
{ | |
"role": "system", | |
"content": [{"type": "text", "text": "You are a helpful assistant."}] | |
} | |
] | |
user_content = [{"type": "image", "image": user_image}] | |
if user_text: | |
user_content.append({"type": "text", "text": user_text}) | |
messages.append({"role": "user", "content": user_content}) | |
# Call the pipeline. | |
output = pipe(text=messages, max_new_tokens=200) | |
# Try to extract the generated content. | |
try: | |
response = output[0]["generated_text"][-1]["content"] | |
except (KeyError, IndexError, TypeError): | |
response = str(output) | |
return response | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(label="Message", placeholder="Type your message here..."), | |
gr.Image(type="pil", label="Upload an Image", source="upload") | |
], | |
outputs=gr.Textbox(label="Response"), | |
title="Gemma 3 Simple Interface", | |
description="Enter your message and upload an image (image upload is mandatory) to get a response." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |