import spaces import gradio as gr import torch from transformers import AutoProcessor, AutoModelForImageTextToText import os hf_token = os.environ.get("HF_TOKEN") model_id = "CohereForAI/aya-vision-8b" # Load the model and processor on startup. try: processor = AutoProcessor.from_pretrained(model_id) model = AutoModelForImageTextToText.from_pretrained( model_id, device_map="auto", torch_dtype=torch.float16, use_auth_token=hf_token ) model_status = "Model loaded successfully!" except Exception as e: processor = None model = None model_status = ( f"Error loading model: {e}\nMake sure to install the correct version of transformers with: " "pip install 'git+https://github.com/huggingface/transformers.git@v4.49.0-AyaVision'" ) @spaces.GPU def process_image_and_prompt(uploaded_image, image_url, prompt, temperature=0.3, max_tokens=300): global processor, model if processor is None or model is None: return "Model failed to load. Please check the logs." # Determine which image input to use: if uploaded_image: # If an image is uploaded, use the image directly. messages = [{ "role": "user", "content": [ {"type": "image", "image": uploaded_image}, {"type": "text", "text": prompt}, ], }] elif image_url and image_url.strip(): # Otherwise, use the provided image URL. img_url = image_url.strip() messages = [{ "role": "user", "content": [ {"type": "image", "url": img_url}, {"type": "text", "text": prompt}, ], }] else: return "Please provide either an image upload or an image URL." try: inputs = processor.apply_chat_template( messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(model.device) gen_tokens = model.generate( **inputs, max_new_tokens=int(max_tokens), do_sample=True, temperature=float(temperature), ) response = processor.tokenizer.decode( gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True ) return response except Exception as e: return f"Error generating response: {e}" # Example inputs for testing. examples = [ [None, "https://media.istockphoto.com/id/458012057/photo/istanbul-turkey.jpg?s=612x612&w=0&k=20&c=qogAOVvkpfUyqLUMr_XJQyq-HkACXyYUSZbKhBlPrxo=", "What landmark is shown in this image?", 0.3, 300], [None, "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium", "What does the text in this image say?", 0.3, 300], [None, "https://upload.wikimedia.org/wikipedia/commons/d/da/The_Parthenon_in_Athens.jpg", "Describe esta imagen en espaƱol", 0.3, 300] ] # Build the Gradio interface. with gr.Blocks(title="Aya Vision 8B Demo") as demo: gr.Markdown("# Aya Vision 8B Model Demo") gr.Markdown( """ This app demonstrates the Aya Vision 8B model. You can either upload an image or provide an image URL. Enter a prompt along with the image. """ ) gr.Markdown(f"**Model Status:** {model_status}") gr.Markdown("### Provide an Image") with gr.Tab("Upload Image"): # Using type="filepath" returns the local file path which is then passed directly. image_upload = gr.Image(label="Upload Image", type="filepath") with gr.Tab("Image URL"): image_url_input = gr.Textbox(label="Image URL", placeholder="Enter a direct image URL") prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=3) with gr.Accordion("Generation Settings", open=False): temperature_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.3, label="Temperature") max_tokens_slider = gr.Slider(minimum=50, maximum=1000, step=50, value=300, label="Max Tokens") generate_btn = gr.Button("Generate Response", variant="primary") output = gr.Textbox(label="Model Response", lines=10) gr.Markdown("### Examples") gr.Examples( examples=examples, inputs=[image_upload, image_url_input, prompt, temperature_slider, max_tokens_slider], outputs=output, fn=process_image_and_prompt ) def generate_response(uploaded_image, image_url, prompt, temperature, max_tokens): return process_image_and_prompt(uploaded_image, image_url, prompt, temperature, max_tokens) generate_btn.click( generate_response, inputs=[image_upload, image_url_input, prompt, temperature_slider, max_tokens_slider], outputs=output ) if __name__ == "__main__": demo.launch()