Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
from PIL import Image | |
import io | |
import requests | |
import spaces | |
# Initialize model and processor globally for caching | |
model_id = "CohereForAI/aya-vision-8b" | |
processor = None | |
model = None | |
def load_model(): | |
global processor, model | |
if processor is None or model is None: | |
try: | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = AutoModelForImageTextToText.from_pretrained( | |
model_id, device_map="auto", torch_dtype=torch.float16 | |
) | |
return "Model loaded successfully!" | |
except Exception as e: | |
return f"Error loading model: {e}\nMake sure to install the correct version of transformers with: pip install 'git+https://github.com/huggingface/[email protected]'" | |
return "Model already loaded!" | |
def process_image_and_prompt(image, image_url, prompt, temperature=0.3, max_tokens=300): | |
global processor, model | |
# Ensure model is loaded | |
if processor is None or model is None: | |
return "Please load the model first using the 'Load Model' button." | |
# Process image input (either uploaded or from URL) | |
if image is not None: | |
img = Image.fromarray(image) | |
elif image_url and image_url.strip(): | |
try: | |
response = requests.get(image_url) | |
img = Image.open(io.BytesIO(response.content)) | |
except Exception as e: | |
return f"Error loading image from URL: {e}" | |
else: | |
return "Please provide either an image or an image URL." | |
# Format message with the aya-vision chat template | |
messages = [ | |
{"role": "user", | |
"content": [ | |
{"type": "image", "source": img}, | |
{"type": "text", "text": prompt}, | |
]}, | |
] | |
# Process input | |
try: | |
inputs = processor.apply_chat_template( | |
messages, | |
padding=True, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt" | |
).to(model.device) | |
# Generate response | |
gen_tokens = model.generate( | |
**inputs, | |
max_new_tokens=int(max_tokens), | |
do_sample=True, | |
temperature=float(temperature), | |
) | |
response = processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) | |
return response | |
except Exception as e: | |
return f"Error generating response: {e}" | |
# Define example inputs | |
examples = [ | |
[None, "https://media.istockphoto.com/id/458012057/photo/istanbul-turkey.jpg?s=612x612&w=0&k=20&c=qogAOVvkpfUyqLUMr_XJQyq-HkACXyYUSZbKhBlPrxo=", "What landmark is shown in this image?", 0.3, 300], | |
[None, "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium", "What does the text in this image say?", 0.3, 300], | |
[None, "https://upload.wikimedia.org/wikipedia/commons/d/da/The_Parthenon_in_Athens.jpg", "Describe esta imagen en español", 0.3, 300] | |
] | |
# Create Gradio application | |
with gr.Blocks(title="Aya Vision 8B Demo") as demo: | |
gr.Markdown("# Aya Vision 8B Model Demo") | |
gr.Markdown(""" | |
This app demonstrates the C4AI Aya Vision 8B model, an 8-billion parameter vision-language model with capabilities including: | |
- OCR (reading text from images) | |
- Image captioning | |
- Visual reasoning | |
- Question answering | |
- Support for 23 languages | |
Upload an image or provide a URL, and enter a prompt to get started! | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
load_button = gr.Button("Load Model", variant="primary") | |
status = gr.Textbox(label="Model Status", placeholder="Model not loaded yet. Click 'Load Model' to start.") | |
gr.Markdown("### Upload an image or provide an image URL:") | |
with gr.Tab("Upload Image"): | |
image_input = gr.Image(label="Upload Image", type="numpy") | |
image_url_input = gr.Textbox(label="Image URL", placeholder="Leave blank if uploading an image", visible=False) | |
with gr.Tab("Image URL"): | |
image_url_visible = gr.Textbox(label="Image URL", placeholder="Enter a URL to an image") | |
image_input_url = gr.Image(label="Upload Image", type="numpy", visible=False) | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt to the model", lines=3) | |
with gr.Accordion("Generation Settings", open=False): | |
temperature = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.3, label="Temperature") | |
max_tokens = gr.Slider(minimum=50, maximum=1000, step=50, value=300, label="Max Tokens") | |
generate_button = gr.Button("Generate Response", variant="primary") | |
with gr.Column(): | |
output = gr.Textbox(label="Model Response", lines=10) | |
# Add examples section | |
gr.Markdown("### Examples") | |
gr.Examples( | |
examples=examples, | |
inputs=[image_input, image_url_visible, prompt, temperature, max_tokens], | |
outputs=output, | |
fn=process_image_and_prompt | |
) | |
# Set up tab switching logic - hide appropriate inputs depending on tab | |
def update_image_tab(): | |
return {image_url_input: gr.update(visible=False), image_input: gr.update(visible=True)} | |
def update_url_tab(): | |
return {image_url_visible: gr.update(visible=True), image_input_url: gr.update(visible=False)} | |
# Define button click behavior | |
load_button.click(load_model, inputs=None, outputs=status) | |
# Handle generation from either image or URL | |
def generate_response(image, image_url_visible, prompt, temperature, max_tokens): | |
return process_image_and_prompt(image, image_url_visible, prompt, temperature, max_tokens) | |
generate_button.click( | |
generate_response, | |
inputs=[image_input, image_url_visible, prompt, temperature, max_tokens], | |
outputs=output | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
demo.launch() | |