mjavaid
first commit
d58a265
raw
history blame
6.22 kB
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import io
import requests
import spaces
# Initialize model and processor globally for caching
model_id = "CohereForAI/aya-vision-8b"
processor = None
model = None
def load_model():
global processor, model
if processor is None or model is None:
try:
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="auto", torch_dtype=torch.float16
)
return "Model loaded successfully!"
except Exception as e:
return f"Error loading model: {e}\nMake sure to install the correct version of transformers with: pip install 'git+https://github.com/huggingface/[email protected]'"
return "Model already loaded!"
@spaces.gpu
def process_image_and_prompt(image, image_url, prompt, temperature=0.3, max_tokens=300):
global processor, model
# Ensure model is loaded
if processor is None or model is None:
return "Please load the model first using the 'Load Model' button."
# Process image input (either uploaded or from URL)
if image is not None:
img = Image.fromarray(image)
elif image_url and image_url.strip():
try:
response = requests.get(image_url)
img = Image.open(io.BytesIO(response.content))
except Exception as e:
return f"Error loading image from URL: {e}"
else:
return "Please provide either an image or an image URL."
# Format message with the aya-vision chat template
messages = [
{"role": "user",
"content": [
{"type": "image", "source": img},
{"type": "text", "text": prompt},
]},
]
# Process input
try:
inputs = processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# Generate response
gen_tokens = model.generate(
**inputs,
max_new_tokens=int(max_tokens),
do_sample=True,
temperature=float(temperature),
)
response = processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return response
except Exception as e:
return f"Error generating response: {e}"
# Define example inputs
examples = [
[None, "https://media.istockphoto.com/id/458012057/photo/istanbul-turkey.jpg?s=612x612&w=0&k=20&c=qogAOVvkpfUyqLUMr_XJQyq-HkACXyYUSZbKhBlPrxo=", "What landmark is shown in this image?", 0.3, 300],
[None, "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium", "What does the text in this image say?", 0.3, 300],
[None, "https://upload.wikimedia.org/wikipedia/commons/d/da/The_Parthenon_in_Athens.jpg", "Describe esta imagen en español", 0.3, 300]
]
# Create Gradio application
with gr.Blocks(title="Aya Vision 8B Demo") as demo:
gr.Markdown("# Aya Vision 8B Model Demo")
gr.Markdown("""
This app demonstrates the C4AI Aya Vision 8B model, an 8-billion parameter vision-language model with capabilities including:
- OCR (reading text from images)
- Image captioning
- Visual reasoning
- Question answering
- Support for 23 languages
Upload an image or provide a URL, and enter a prompt to get started!
""")
with gr.Row():
with gr.Column():
load_button = gr.Button("Load Model", variant="primary")
status = gr.Textbox(label="Model Status", placeholder="Model not loaded yet. Click 'Load Model' to start.")
gr.Markdown("### Upload an image or provide an image URL:")
with gr.Tab("Upload Image"):
image_input = gr.Image(label="Upload Image", type="numpy")
image_url_input = gr.Textbox(label="Image URL", placeholder="Leave blank if uploading an image", visible=False)
with gr.Tab("Image URL"):
image_url_visible = gr.Textbox(label="Image URL", placeholder="Enter a URL to an image")
image_input_url = gr.Image(label="Upload Image", type="numpy", visible=False)
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt to the model", lines=3)
with gr.Accordion("Generation Settings", open=False):
temperature = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.3, label="Temperature")
max_tokens = gr.Slider(minimum=50, maximum=1000, step=50, value=300, label="Max Tokens")
generate_button = gr.Button("Generate Response", variant="primary")
with gr.Column():
output = gr.Textbox(label="Model Response", lines=10)
# Add examples section
gr.Markdown("### Examples")
gr.Examples(
examples=examples,
inputs=[image_input, image_url_visible, prompt, temperature, max_tokens],
outputs=output,
fn=process_image_and_prompt
)
# Set up tab switching logic - hide appropriate inputs depending on tab
def update_image_tab():
return {image_url_input: gr.update(visible=False), image_input: gr.update(visible=True)}
def update_url_tab():
return {image_url_visible: gr.update(visible=True), image_input_url: gr.update(visible=False)}
# Define button click behavior
load_button.click(load_model, inputs=None, outputs=status)
# Handle generation from either image or URL
def generate_response(image, image_url_visible, prompt, temperature, max_tokens):
return process_image_and_prompt(image, image_url_visible, prompt, temperature, max_tokens)
generate_button.click(
generate_response,
inputs=[image_input, image_url_visible, prompt, temperature, max_tokens],
outputs=output
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()