File size: 6,491 Bytes
911fcc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import io
import os
import time
from http import HTTPStatus

import numpy as np
import ormsgpack
import soundfile as sf
import torch
from kui.asgi import Body, HTTPException, JSONResponse, Routes, StreamResponse, request
from loguru import logger
from typing_extensions import Annotated

from tools.schema import (
    ServeASRRequest,
    ServeASRResponse,
    ServeChatRequest,
    ServeTTSRequest,
    ServeVQGANDecodeRequest,
    ServeVQGANDecodeResponse,
    ServeVQGANEncodeRequest,
    ServeVQGANEncodeResponse,
)
from tools.server.agent import get_response_generator
from tools.server.api_utils import (
    buffer_to_async_generator,
    get_content_type,
    inference_async,
)
from tools.server.inference import inference_wrapper as inference
from tools.server.model_manager import ModelManager
from tools.server.model_utils import batch_asr, cached_vqgan_batch_encode, vqgan_decode

MAX_NUM_SAMPLES = int(os.getenv("NUM_SAMPLES", 1))

routes = Routes()


@routes.http.post("/v1/health")
async def health():
    return JSONResponse({"status": "ok"})


@routes.http.post("/v1/vqgan/encode")
async def vqgan_encode(req: Annotated[ServeVQGANEncodeRequest, Body(exclusive=True)]):
    # Get the model from the app
    model_manager: ModelManager = request.app.state.model_manager
    decoder_model = model_manager.decoder_model

    # Encode the audio
    start_time = time.time()
    tokens = cached_vqgan_batch_encode(decoder_model, req.audios)
    logger.info(f"[EXEC] VQGAN encode time: {(time.time() - start_time) * 1000:.2f}ms")

    # Return the response
    return ormsgpack.packb(
        ServeVQGANEncodeResponse(tokens=[i.tolist() for i in tokens]),
        option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
    )


@routes.http.post("/v1/vqgan/decode")
async def vqgan_decode(req: Annotated[ServeVQGANDecodeRequest, Body(exclusive=True)]):
    # Get the model from the app
    model_manager: ModelManager = request.app.state.model_manager
    decoder_model = model_manager.decoder_model

    # Decode the audio
    tokens = [torch.tensor(token, dtype=torch.int) for token in req.tokens]
    start_time = time.time()
    audios = vqgan_decode(decoder_model, tokens)
    logger.info(f"[EXEC] VQGAN decode time: {(time.time() - start_time) * 1000:.2f}ms")
    audios = [audio.astype(np.float16).tobytes() for audio in audios]

    # Return the response
    return ormsgpack.packb(
        ServeVQGANDecodeResponse(audios=audios),
        option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
    )


@routes.http.post("/v1/asr")
async def asr(req: Annotated[ServeASRRequest, Body(exclusive=True)]):
    # Get the model from the app
    model_manager: ModelManager = request.app.state.model_manager
    asr_model = model_manager.asr_model
    lock = request.app.state.lock

    # Perform ASR
    start_time = time.time()
    audios = [np.frombuffer(audio, dtype=np.float16) for audio in req.audios]
    audios = [torch.from_numpy(audio).float() for audio in audios]

    if any(audios.shape[-1] >= 30 * req.sample_rate for audios in audios):
        raise HTTPException(status_code=400, content="Audio length is too long")

    transcriptions = batch_asr(
        asr_model, lock, audios=audios, sr=req.sample_rate, language=req.language
    )
    logger.info(f"[EXEC] ASR time: {(time.time() - start_time) * 1000:.2f}ms")

    # Return the response
    return ormsgpack.packb(
        ServeASRResponse(transcriptions=transcriptions),
        option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
    )


@routes.http.post("/v1/tts")
async def tts(req: Annotated[ServeTTSRequest, Body(exclusive=True)]):
    # Get the model from the app
    app_state = request.app.state
    model_manager: ModelManager = app_state.model_manager
    engine = model_manager.tts_inference_engine
    sample_rate = engine.decoder_model.spec_transform.sample_rate

    # Check if the text is too long
    if app_state.max_text_length > 0 and len(req.text) > app_state.max_text_length:
        raise HTTPException(
            HTTPStatus.BAD_REQUEST,
            content=f"Text is too long, max length is {app_state.max_text_length}",
        )

    # Check if streaming is enabled
    if req.streaming and req.format != "wav":
        raise HTTPException(
            HTTPStatus.BAD_REQUEST,
            content="Streaming only supports WAV format",
        )

    # Perform TTS
    if req.streaming:
        return StreamResponse(
            iterable=inference_async(req, engine),
            headers={
                "Content-Disposition": f"attachment; filename=audio.{req.format}",
            },
            content_type=get_content_type(req.format),
        )
    else:
        fake_audios = next(inference(req, engine))
        buffer = io.BytesIO()
        sf.write(
            buffer,
            fake_audios,
            sample_rate,
            format=req.format,
        )

        return StreamResponse(
            iterable=buffer_to_async_generator(buffer.getvalue()),
            headers={
                "Content-Disposition": f"attachment; filename=audio.{req.format}",
            },
            content_type=get_content_type(req.format),
        )


@routes.http.post("/v1/chat")
async def chat(req: Annotated[ServeChatRequest, Body(exclusive=True)]):
    # Check that the number of samples requested is correct
    if req.num_samples < 1 or req.num_samples > MAX_NUM_SAMPLES:
        raise HTTPException(
            HTTPStatus.BAD_REQUEST,
            content=f"Number of samples must be between 1 and {MAX_NUM_SAMPLES}",
        )

    # Get the type of content provided
    content_type = request.headers.get("Content-Type", "application/json")
    json_mode = "application/json" in content_type

    # Get the models from the app
    model_manager: ModelManager = request.app.state.model_manager
    llama_queue = model_manager.llama_queue
    tokenizer = model_manager.tokenizer
    config = model_manager.config

    device = request.app.state.device

    # Get the response generators
    response_generator = get_response_generator(
        llama_queue, tokenizer, config, req, device, json_mode
    )

    # Return the response in the correct format
    if req.streaming is False:
        result = response_generator()
        if json_mode:
            return JSONResponse(result.model_dump())
        else:
            return ormsgpack.packb(result, option=ormsgpack.OPT_SERIALIZE_PYDANTIC)

    return StreamResponse(
        iterable=response_generator(), content_type="text/event-stream"
    )