Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,17 +3,19 @@ import streamlit as st
|
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
|
6 |
-
PINECONE_KEY = st.secrets["
|
|
|
7 |
|
8 |
@st.experimental_singleton
|
9 |
def init_pinecone():
|
10 |
-
pinecone.init(api_key=PINECONE_KEY, environment=
|
11 |
-
return pinecone.Index("
|
12 |
|
13 |
@st.experimental_singleton
|
14 |
def init_models():
|
15 |
-
retriever = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1")
|
16 |
-
|
|
|
17 |
reader = pipeline(tokenizer=model_name, model=model_name, task='question-answering')
|
18 |
return retriever, reader
|
19 |
|
@@ -54,15 +56,15 @@ def run_query(query):
|
|
54 |
xc = st.session_state.index.query(xq, top_k=3, include_metadata=True)
|
55 |
except:
|
56 |
# force reload
|
57 |
-
pinecone.init(api_key=PINECONE_KEY, environment=
|
58 |
-
st.session_state.index = pinecone.Index("
|
59 |
xc = st.session_state.index.query(xq, top_k=3, include_metadata=True)
|
60 |
|
61 |
results = []
|
62 |
for match in xc['matches']:
|
63 |
answer = reader(question=query, context=match["metadata"]['context'])
|
64 |
-
answer["title"] = match["metadata"]['
|
65 |
-
answer["context"] = match["metadata"]['
|
66 |
results.append(answer)
|
67 |
|
68 |
sorted_result = sorted(results, key=lambda x: x['score'], reverse=True)
|
|
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
|
6 |
+
PINECONE_KEY = st.secrets["PINECONE_API_KEY"] # app.pinecone.io
|
7 |
+
PINE_CONE_ENVIRONMENT = st.secrets["PINE_CONE_ENVIRONMENT"] # app.pinecone.io
|
8 |
|
9 |
@st.experimental_singleton
|
10 |
def init_pinecone():
|
11 |
+
pinecone.init(api_key=PINECONE_KEY, environment=PINE_CONE_ENVIRONMENT) # get a free api key from app.pinecone.io
|
12 |
+
return pinecone.Index("dompany-description")
|
13 |
|
14 |
@st.experimental_singleton
|
15 |
def init_models():
|
16 |
+
#retriever = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1")
|
17 |
+
retriever = SentenceTransformer('Xenova/text-embedding-ada-002')
|
18 |
+
model_name = 'Xenova/text-embedding-ada-002'
|
19 |
reader = pipeline(tokenizer=model_name, model=model_name, task='question-answering')
|
20 |
return retriever, reader
|
21 |
|
|
|
56 |
xc = st.session_state.index.query(xq, top_k=3, include_metadata=True)
|
57 |
except:
|
58 |
# force reload
|
59 |
+
pinecone.init(api_key=PINECONE_KEY, environment=PINE_CONE_ENVIRONMENT)
|
60 |
+
st.session_state.index = pinecone.Index("dompany-description")
|
61 |
xc = st.session_state.index.query(xq, top_k=3, include_metadata=True)
|
62 |
|
63 |
results = []
|
64 |
for match in xc['matches']:
|
65 |
answer = reader(question=query, context=match["metadata"]['context'])
|
66 |
+
answer["title"] = match["metadata"]['name']
|
67 |
+
answer["context"] = match["metadata"]['name']
|
68 |
results.append(answer)
|
69 |
|
70 |
sorted_result = sorted(results, key=lambda x: x['score'], reverse=True)
|