Spaces:
Paused
Paused
hanoch.rahimi@gmail
commited on
Commit
·
6a2ae7a
1
Parent(s):
adb5688
initial conversation
Browse files
app.py
CHANGED
|
@@ -10,6 +10,8 @@ import streamlit as st
|
|
| 10 |
from transformers import AutoTokenizer
|
| 11 |
from sentence_transformers import SentenceTransformer
|
| 12 |
|
|
|
|
|
|
|
| 13 |
import utils
|
| 14 |
|
| 15 |
PINECONE_KEY = st.secrets["PINECONE_API_KEY"] # app.pinecone.io
|
|
@@ -43,6 +45,7 @@ def init_models():
|
|
| 43 |
return retriever, tokenizer#, vectorstore
|
| 44 |
|
| 45 |
retriever, tokenizer = init_models()
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
def card(company_id, name, description, score, data_type, region, country, metadata, is_debug):
|
|
@@ -59,41 +62,31 @@ def card(company_id, name, description, score, data_type, region, country, metad
|
|
| 59 |
except Exception as e:
|
| 60 |
print(f"An error occurred: {str(e)}")
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
markdown = f"""
|
| 66 |
<div class="row align-items-start" style="padding-bottom:10px;">
|
| 67 |
<div class="col-md-8 col-sm-8">
|
| 68 |
<b>{name} (<a href='https://{company_id}'>website</a>).</b>
|
| 69 |
-
<p style="">
|
| 70 |
-
{description}
|
| 71 |
-
</p>
|
| 72 |
-
</div>
|
| 73 |
-
<div class="col-md-1 col-sm-1">
|
| 74 |
-
<span>{country}</span>
|
| 75 |
-
</div>
|
| 76 |
-
<div class="col-md-1 col-sm-1">
|
| 77 |
-
<span>{customer_problem}</span>
|
| 78 |
-
</div>
|
| 79 |
-
<div class="col-md-1 col-sm-1">
|
| 80 |
-
<span>{business_model}</span>
|
| 81 |
-
</div>
|
| 82 |
-
<div class="col-md-1 col-sm-1">
|
| 83 |
-
<button type='button' onclick="like_company({company_id});">Like</button>
|
| 84 |
-
<button type='button' onclick="dislike_company({company_id});">DisLike</button>
|
| 85 |
</div>
|
|
|
|
|
|
|
|
|
|
| 86 |
"""
|
| 87 |
|
| 88 |
if is_debug:
|
| 89 |
markdown = markdown + f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
<div class="col-md-1 col-sm-1">
|
| 91 |
<span>{data_type}</span>
|
| 92 |
<span>[Score: {score}</span>
|
| 93 |
</div>
|
| 94 |
"""
|
| 95 |
markdown = markdown + "</div>"
|
| 96 |
-
|
|
|
|
| 97 |
|
| 98 |
|
| 99 |
def index_query(xq, top_k, regions=[], countries=[], index_namespace="websummarized"):
|
|
@@ -114,32 +107,8 @@ def index_query(xq, top_k, regions=[], countries=[], index_namespace="websummari
|
|
| 114 |
#xc = st.session_state.index.query(xq, top_k=top_k, include_metadata=True, include_vectors = True)
|
| 115 |
return xc
|
| 116 |
|
| 117 |
-
def call_openai(prompt, engine="gpt-3.5-turbo", temp=0, top_p=1.0, max_tokens=4048):
|
| 118 |
-
try:
|
| 119 |
-
response = openai.ChatCompletion.create(
|
| 120 |
-
model=engine,
|
| 121 |
-
messages=[{"role": "user", "content": prompt}],
|
| 122 |
-
temperature=temp,
|
| 123 |
-
max_tokens=max_tokens
|
| 124 |
-
)
|
| 125 |
-
print(response)
|
| 126 |
-
text = response.choices[0].message["content"].strip()
|
| 127 |
-
return text
|
| 128 |
-
except openai.error.OpenAIError as e:
|
| 129 |
-
print(f"An error occurred: {str(e)}")
|
| 130 |
-
return "Failed to generate a response."
|
| 131 |
-
|
| 132 |
-
def on_prompt_selected():
|
| 133 |
-
title = st.session_state.advanced_prompts_select
|
| 134 |
-
new_prompt = utils.get_prompt(title)
|
| 135 |
-
if len(new_prompt)>0 and len(new_prompt[0])>0:
|
| 136 |
-
print(f"Got a prompt for title {title}\n {new_prompt[0]}")
|
| 137 |
-
st.session_state.prompt_title_editable = st.session_state.advanced_prompts_select
|
| 138 |
-
st.session_state.advanced_prompt_content = new_prompt[0]
|
| 139 |
-
else:
|
| 140 |
-
print(f"No results for title {st.session_state.advanced_prompts_select}")
|
| 141 |
|
| 142 |
-
def run_query(query, prompt, scrape_boost, top_k , regions, countries, is_debug, index_namespace):
|
| 143 |
xq = retriever.encode([query]).tolist()
|
| 144 |
try:
|
| 145 |
xc = index_query(xq, top_k, regions, countries)
|
|
@@ -182,44 +151,61 @@ def run_query(query, prompt, scrape_boost, top_k , regions, countries, is_debug,
|
|
| 182 |
# Create a summarized report focusing on the top3 companies.
|
| 183 |
# For every company find its uniqueness over the other companies. Use only information from the descriptions.
|
| 184 |
# """
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
sorted_results = sorted(results, key=lambda x: x['score'], reverse=True)
|
| 199 |
|
| 200 |
-
st.markdown("<h2>Related companies</h2>", unsafe_allow_html=True)
|
| 201 |
-
|
| 202 |
names = []
|
| 203 |
-
|
| 204 |
-
<
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
| 223 |
for r in sorted_results:
|
| 224 |
company_name = r["name"]
|
| 225 |
if company_name in names:
|
|
@@ -235,41 +221,45 @@ def run_query(query, prompt, scrape_boost, top_k , regions, countries, is_debug,
|
|
| 235 |
region = r["metadata"]["region"]
|
| 236 |
country = r["metadata"]["country"]
|
| 237 |
company_id = r["metadata"]["company_id"]
|
| 238 |
-
card(company_id, company_name, description, score, data_type, region, country, r['data'], is_debug)
|
| 239 |
|
| 240 |
-
|
|
|
|
| 241 |
|
| 242 |
|
| 243 |
-
def
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
-
def password_entered():
|
| 247 |
-
"""Checks whether a password entered by the user is correct."""
|
| 248 |
-
if st.session_state["password"] == st.secrets["password"]:
|
| 249 |
-
st.session_state["password_correct"] = True
|
| 250 |
-
del st.session_state["password"] # don't store password
|
| 251 |
-
else:
|
| 252 |
-
st.session_state["password_correct"] = False
|
| 253 |
-
|
| 254 |
-
if "password_correct" not in st.session_state:
|
| 255 |
-
# First run, show input for password.
|
| 256 |
-
st.text_input(
|
| 257 |
-
"Password", type="password", on_change=password_entered, key="password"
|
| 258 |
-
)
|
| 259 |
-
return False
|
| 260 |
-
elif not st.session_state["password_correct"]:
|
| 261 |
-
# Password not correct, show input + error.
|
| 262 |
-
st.text_input(
|
| 263 |
-
"Password", type="password", on_change=password_entered, key="password"
|
| 264 |
-
)
|
| 265 |
-
st.error("😕 Password incorrect")
|
| 266 |
-
return False
|
| 267 |
-
else:
|
| 268 |
-
# Password correct.
|
| 269 |
-
return True
|
| 270 |
|
| 271 |
-
if check_password():
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
st.write("""
|
| 275 |
Search for a company in free text. Describe the type of company you are looking for, the problem they solve and the solution they provide. You can also copy in the description of a similar company to kick off the search.
|
|
@@ -317,6 +307,8 @@ if check_password():
|
|
| 317 |
''',
|
| 318 |
unsafe_allow_html=True
|
| 319 |
)
|
|
|
|
|
|
|
| 320 |
tab_search, tab_advanced = st.tabs(["Search", "Settings"])
|
| 321 |
|
| 322 |
|
|
@@ -331,6 +323,7 @@ if check_password():
|
|
| 331 |
scrape_boost = st.number_input('Web to API content ratio', value=1.)
|
| 332 |
top_k = st.number_input('# Top Results', value=20)
|
| 333 |
is_debug = st.checkbox("Debug output", value = False, key="debug")
|
|
|
|
| 334 |
index_namespace = st.selectbox(label="Data Type", options=["websummarized", "web", "cbli", "all"], index=0)
|
| 335 |
liked_companies = st.text_input(label="liked companies", key='liked_companies')
|
| 336 |
disliked_companies = st.text_input(label="disliked companies", key='disliked_companies')
|
|
@@ -340,10 +333,16 @@ if check_password():
|
|
| 340 |
with tab_search:
|
| 341 |
#report_type = st.multiselect("Report Type", utils.get_prompts(), key="search_prompts_multiselect")
|
| 342 |
query = st.text_input("Search!", "")
|
| 343 |
-
cluster = st.checkbox("Cluster the results", value = False, key = "cluster")
|
|
|
|
| 344 |
#prompt_new = st.button("New", on_click = _prompt(prompt_title, prompt))
|
| 345 |
|
| 346 |
if query != "":
|
| 347 |
-
|
| 348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
|
|
|
| 10 |
from transformers import AutoTokenizer
|
| 11 |
from sentence_transformers import SentenceTransformer
|
| 12 |
|
| 13 |
+
import streamlit.components.v1 as components
|
| 14 |
+
|
| 15 |
import utils
|
| 16 |
|
| 17 |
PINECONE_KEY = st.secrets["PINECONE_API_KEY"] # app.pinecone.io
|
|
|
|
| 45 |
return retriever, tokenizer#, vectorstore
|
| 46 |
|
| 47 |
retriever, tokenizer = init_models()
|
| 48 |
+
#st.session_state.messages = [{"role":"system", "content":"You are an assistant who helps users find startups to invest in."}]
|
| 49 |
|
| 50 |
|
| 51 |
def card(company_id, name, description, score, data_type, region, country, metadata, is_debug):
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
print(f"An error occurred: {str(e)}")
|
| 64 |
|
|
|
|
|
|
|
|
|
|
| 65 |
markdown = f"""
|
| 66 |
<div class="row align-items-start" style="padding-bottom:10px;">
|
| 67 |
<div class="col-md-8 col-sm-8">
|
| 68 |
<b>{name} (<a href='https://{company_id}'>website</a>).</b>
|
| 69 |
+
<p style="">{description}</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
</div>
|
| 71 |
+
<div class="col-md-1 col-sm-1"><span>{country}</span></div>
|
| 72 |
+
<div class="col-md-1 col-sm-1"><span>{customer_problem}</span></div>
|
| 73 |
+
<div class="col-md-1 col-sm-1"><span>{business_model}</span></div>
|
| 74 |
"""
|
| 75 |
|
| 76 |
if is_debug:
|
| 77 |
markdown = markdown + f"""
|
| 78 |
+
<div class="col-md-1 col-sm-1" style="display:none;">
|
| 79 |
+
<button type='button' onclick="like_company({company_id});">Like</button>
|
| 80 |
+
<button type='button' onclick="dislike_company({company_id});">DisLike</button>
|
| 81 |
+
</div>
|
| 82 |
<div class="col-md-1 col-sm-1">
|
| 83 |
<span>{data_type}</span>
|
| 84 |
<span>[Score: {score}</span>
|
| 85 |
</div>
|
| 86 |
"""
|
| 87 |
markdown = markdown + "</div>"
|
| 88 |
+
#print(f" markdown for {company_id}\n{markdown}")
|
| 89 |
+
return markdown
|
| 90 |
|
| 91 |
|
| 92 |
def index_query(xq, top_k, regions=[], countries=[], index_namespace="websummarized"):
|
|
|
|
| 107 |
#xc = st.session_state.index.query(xq, top_k=top_k, include_metadata=True, include_vectors = True)
|
| 108 |
return xc
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
def run_query(query, prompt, scrape_boost, top_k , regions, countries, is_debug, index_namespace, openai_model):
|
| 112 |
xq = retriever.encode([query]).tolist()
|
| 113 |
try:
|
| 114 |
xc = index_query(xq, top_k, regions, countries)
|
|
|
|
| 151 |
# Create a summarized report focusing on the top3 companies.
|
| 152 |
# For every company find its uniqueness over the other companies. Use only information from the descriptions.
|
| 153 |
# """
|
| 154 |
+
if prompt!="":
|
| 155 |
+
descriptions = "\n".join([f"Description of company \"{res['name']}\": {res['data']['Summary']}.\n" for res in results[:20] if 'Summary' in res['data']])
|
| 156 |
+
ntokens = len(descriptions.split(" "))
|
| 157 |
+
|
| 158 |
+
print(f"Descriptions ({ntokens} tokens):\n {descriptions[:1000]}")
|
| 159 |
+
|
| 160 |
+
prompt_txt = prompt + """
|
| 161 |
+
User query: {query}
|
| 162 |
+
Company descriptions: {descriptions}
|
| 163 |
+
"""
|
| 164 |
+
prompt_template = PromptTemplate(template=prompt_txt, input_variables=["descriptions", "query"])
|
| 165 |
+
prompt = prompt_template.format(descriptions = descriptions, query = query)
|
| 166 |
+
|
| 167 |
+
print(f"==============================\nPrompt:\n{prompt}\n==============================\n")
|
| 168 |
+
new_message = {"role": "user", "content": prompt}
|
| 169 |
+
m_text = utils.call_openai(prompt, engine=openai_model, temp=0, top_p=1.0)
|
| 170 |
+
|
| 171 |
+
m_text
|
| 172 |
+
|
| 173 |
+
else:
|
| 174 |
+
new_message = {"role": "user", "content": query}
|
| 175 |
+
|
| 176 |
+
st.session_state.messages.append(new_message)
|
| 177 |
+
render_history()
|
| 178 |
+
# for message in st.session_state.messages:
|
| 179 |
+
# with st.chat_message(message["role"]):
|
| 180 |
+
# st.markdown(message["content"])
|
| 181 |
+
# print(f"History: \n {st.session_state.messages}")
|
| 182 |
|
| 183 |
sorted_results = sorted(results, key=lambda x: x['score'], reverse=True)
|
| 184 |
|
|
|
|
|
|
|
| 185 |
names = []
|
| 186 |
+
# list_html = """
|
| 187 |
+
# <h2>Companies list</h2>
|
| 188 |
+
# <div class="container-fluid">
|
| 189 |
+
# <div class="row align-items-start" style="padding-bottom:10px;">
|
| 190 |
+
# <div class="col-md-8 col-sm-8">
|
| 191 |
+
# <span>Company</span>
|
| 192 |
+
# </div>
|
| 193 |
+
# <div class="col-md-1 col-sm-1">
|
| 194 |
+
# <span>Country</span>
|
| 195 |
+
# </div>
|
| 196 |
+
# <div class="col-md-1 col-sm-1">
|
| 197 |
+
# <span>Customer Problem</span>
|
| 198 |
+
# </div>
|
| 199 |
+
# <div class="col-md-1 col-sm-1">
|
| 200 |
+
# <span>Business Model</span>
|
| 201 |
+
# </div>
|
| 202 |
+
# <div class="col-md-1 col-sm-1">
|
| 203 |
+
# Actions
|
| 204 |
+
# </div>
|
| 205 |
+
# </div>
|
| 206 |
+
# """
|
| 207 |
+
list_html = "<div class='container-fluid'>"
|
| 208 |
+
|
| 209 |
for r in sorted_results:
|
| 210 |
company_name = r["name"]
|
| 211 |
if company_name in names:
|
|
|
|
| 221 |
region = r["metadata"]["region"]
|
| 222 |
country = r["metadata"]["country"]
|
| 223 |
company_id = r["metadata"]["company_id"]
|
| 224 |
+
list_html = list_html + card(company_id, company_name, description, score, data_type, region, country, r['data'], is_debug)
|
| 225 |
|
| 226 |
+
list_html = list_html + '</div>'
|
| 227 |
+
st.markdown(list_html, unsafe_allow_html=True)
|
| 228 |
|
| 229 |
|
| 230 |
+
def render_history():
|
| 231 |
+
with st.session_state.history_container:
|
| 232 |
+
|
| 233 |
+
s = f"""
|
| 234 |
+
<div style='overflow: hidden;'>
|
| 235 |
+
<div id="chat_history" style='overflow-y: scroll;height: 100px;'>
|
| 236 |
+
"""
|
| 237 |
+
for m in st.session_state.messages:
|
| 238 |
+
#print(f"Printing message\t {m['role']}: {m['content']}")
|
| 239 |
+
s = s + f"<div>{m['role']}: {m['content']}</div>"
|
| 240 |
+
|
| 241 |
+
s = s + f"""</div>
|
| 242 |
+
</div>
|
| 243 |
+
<script>
|
| 244 |
+
var el = document.getElementById("chat_history");
|
| 245 |
+
console.log(el.scrollTop, el.scrollHeight);
|
| 246 |
+
el.scrollTop = el.scrollHeight;
|
| 247 |
+
console.log(el.scrollTop, el.scrollHeight);
|
| 248 |
+
</script>
|
| 249 |
+
"""
|
| 250 |
+
|
| 251 |
+
components.html(s, height=140)
|
| 252 |
+
#st.markdown(s, unsafe_allow_html=True)
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
+
if utils.check_password():
|
| 256 |
+
|
| 257 |
+
st.markdown("<script language='javascript'>console.log('scrolling');</script>", unsafe_allow_html=True)
|
| 258 |
+
|
| 259 |
+
if "messages" not in st.session_state:
|
| 260 |
+
st.session_state.messages = [{"role":"system", "content":"You are an assistant who helps users find startups to invest in."}]
|
| 261 |
+
|
| 262 |
+
st.title("Raized")
|
| 263 |
|
| 264 |
st.write("""
|
| 265 |
Search for a company in free text. Describe the type of company you are looking for, the problem they solve and the solution they provide. You can also copy in the description of a similar company to kick off the search.
|
|
|
|
| 307 |
''',
|
| 308 |
unsafe_allow_html=True
|
| 309 |
)
|
| 310 |
+
st.session_state.history_container = st.container()
|
| 311 |
+
|
| 312 |
tab_search, tab_advanced = st.tabs(["Search", "Settings"])
|
| 313 |
|
| 314 |
|
|
|
|
| 323 |
scrape_boost = st.number_input('Web to API content ratio', value=1.)
|
| 324 |
top_k = st.number_input('# Top Results', value=20)
|
| 325 |
is_debug = st.checkbox("Debug output", value = False, key="debug")
|
| 326 |
+
openai_model = st.selectbox(label="Model", options=["gpt-4-1106-preview", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-16k"], index=0, key="openai_model")
|
| 327 |
index_namespace = st.selectbox(label="Data Type", options=["websummarized", "web", "cbli", "all"], index=0)
|
| 328 |
liked_companies = st.text_input(label="liked companies", key='liked_companies')
|
| 329 |
disliked_companies = st.text_input(label="disliked companies", key='disliked_companies')
|
|
|
|
| 333 |
with tab_search:
|
| 334 |
#report_type = st.multiselect("Report Type", utils.get_prompts(), key="search_prompts_multiselect")
|
| 335 |
query = st.text_input("Search!", "")
|
| 336 |
+
#cluster = st.checkbox("Cluster the results", value = False, key = "cluster")
|
| 337 |
+
report_type = st.selectbox(label="Response Type", options=["company_list", "standard", "clustered"], index=0)
|
| 338 |
#prompt_new = st.button("New", on_click = _prompt(prompt_title, prompt))
|
| 339 |
|
| 340 |
if query != "":
|
| 341 |
+
if report_type=="standard":
|
| 342 |
+
prompt = default_prompt
|
| 343 |
+
elif report_type=="clustered":
|
| 344 |
+
prompt = clustering_prompt
|
| 345 |
+
else:
|
| 346 |
+
prompt = ""
|
| 347 |
+
run_query(query, prompt, scrape_boost, top_k, region_selectbox, countries_selectbox, is_debug, index_namespace, openai_model)
|
| 348 |
|
utils.py
CHANGED
|
@@ -2,6 +2,7 @@ import pandas as pd
|
|
| 2 |
import psycopg2
|
| 3 |
from psycopg2 import extras
|
| 4 |
import streamlit as st
|
|
|
|
| 5 |
|
| 6 |
# def create_connection():
|
| 7 |
# host = st.secrets["RAIZED_DB_HOST"]
|
|
@@ -17,7 +18,51 @@ import streamlit as st
|
|
| 17 |
# )
|
| 18 |
|
| 19 |
###
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
def get_prompt(title):
|
| 23 |
return ""
|
|
@@ -35,14 +80,21 @@ def get_prompt(title):
|
|
| 35 |
# print(f"Results getting {title}")
|
| 36 |
# return res
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
default_prompt = """
|
| 39 |
-
|
| 40 |
-
the report should mention the most important companies and how they compare to each other and contain the following sections
|
| 41 |
-
|
| 42 |
-
2) Best matches: Naming of the 3 companies from the list that are most similar to the search query:
|
| 43 |
-
- summarize what they are doing
|
| 44 |
- name customers and technology if they are mentioned
|
| 45 |
-
- compare
|
| 46 |
----"""
|
| 47 |
|
| 48 |
clustering_prompt = """Please create a document with the following headings:
|
|
@@ -76,4 +128,21 @@ List with all the companies in this cluster. Each list item should be structured
|
|
| 76 |
* name of the company in bold (URL of the company, country location of the company): short summary summary of what the company does (max 30 tokens)
|
| 77 |
H1: How you could improve your search
|
| 78 |
“I hope you have already found some interesting matches. I am happy to let you refine your search. Here are some ideas on how to find matches in relation to your original question around (“user query”):”
|
| 79 |
-
* List of ideas on how to refine and improve the search"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import psycopg2
|
| 3 |
from psycopg2 import extras
|
| 4 |
import streamlit as st
|
| 5 |
+
import openai
|
| 6 |
|
| 7 |
# def create_connection():
|
| 8 |
# host = st.secrets["RAIZED_DB_HOST"]
|
|
|
|
| 18 |
# )
|
| 19 |
|
| 20 |
###
|
| 21 |
+
|
| 22 |
+
def call_openai(prompt, engine="gpt-3.5-turbo", temp=0, top_p=1.0, max_tokens=4048):
|
| 23 |
+
try:
|
| 24 |
+
response = openai.ChatCompletion.create(
|
| 25 |
+
model=engine,
|
| 26 |
+
messages=st.session_state.messages,
|
| 27 |
+
temperature=temp,
|
| 28 |
+
max_tokens=max_tokens
|
| 29 |
+
)
|
| 30 |
+
print(f"Open AI response\n {response}")
|
| 31 |
+
text = response.choices[0].message["content"].strip()
|
| 32 |
+
st.session_state.messages.append({"role": "system", "content": text})
|
| 33 |
+
return text
|
| 34 |
+
except openai.error.OpenAIError as e:
|
| 35 |
+
print(f"An error occurred: {str(e)}")
|
| 36 |
+
return "Failed to generate a response."
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def check_password():
|
| 40 |
+
"""Returns `True` if the user had the correct password."""
|
| 41 |
+
|
| 42 |
+
def password_entered():
|
| 43 |
+
"""Checks whether a password entered by the user is correct."""
|
| 44 |
+
if st.session_state["password"] == st.secrets["password"]:
|
| 45 |
+
st.session_state["password_correct"] = True
|
| 46 |
+
del st.session_state["password"] # don't store password
|
| 47 |
+
else:
|
| 48 |
+
st.session_state["password_correct"] = False
|
| 49 |
+
|
| 50 |
+
if "password_correct" not in st.session_state:
|
| 51 |
+
# First run, show input for password.
|
| 52 |
+
st.text_input(
|
| 53 |
+
"Password", type="password", on_change=password_entered, key="password"
|
| 54 |
+
)
|
| 55 |
+
return False
|
| 56 |
+
elif not st.session_state["password_correct"]:
|
| 57 |
+
# Password not correct, show input + error.
|
| 58 |
+
st.text_input(
|
| 59 |
+
"Password", type="password", on_change=password_entered, key="password"
|
| 60 |
+
)
|
| 61 |
+
st.error("😕 Password incorrect")
|
| 62 |
+
return False
|
| 63 |
+
else:
|
| 64 |
+
# Password correct.
|
| 65 |
+
return True
|
| 66 |
|
| 67 |
def get_prompt(title):
|
| 68 |
return ""
|
|
|
|
| 80 |
# print(f"Results getting {title}")
|
| 81 |
# return res
|
| 82 |
|
| 83 |
+
# default_prompt = """
|
| 84 |
+
# summarize the outcome of this search. The context is a list of company names followed by the company's description and a relevance score to the user query.
|
| 85 |
+
# the report should mention the most important companies and how they compare to each other and contain the following sections:
|
| 86 |
+
# 1) Title: query text (summarized if more than 20 tokens)
|
| 87 |
+
# 2) Best matches: Naming of the 3 companies from the list that are most similar to the search query:
|
| 88 |
+
# - summarize what they are doing
|
| 89 |
+
# - name customers and technology if they are mentioned
|
| 90 |
+
# - compare them to each other and point out what they do differently or what is their unique selling proposition
|
| 91 |
+
# ----"""
|
| 92 |
default_prompt = """
|
| 93 |
+
You are an invesment assistant. Below is a user query followed by a list of company descriptions that match the user query.
|
| 94 |
+
the report should mention the most important companies and how they compare to each other and contain the following sections
|
| 95 |
+
- summarize what those companies they are doing
|
|
|
|
|
|
|
| 96 |
- name customers and technology if they are mentioned
|
| 97 |
+
- compare the companies to each other and point out what they do differently or what is their unique selling proposition
|
| 98 |
----"""
|
| 99 |
|
| 100 |
clustering_prompt = """Please create a document with the following headings:
|
|
|
|
| 128 |
* name of the company in bold (URL of the company, country location of the company): short summary summary of what the company does (max 30 tokens)
|
| 129 |
H1: How you could improve your search
|
| 130 |
“I hope you have already found some interesting matches. I am happy to let you refine your search. Here are some ideas on how to find matches in relation to your original question around (“user query”):”
|
| 131 |
+
* List of ideas on how to refine and improve the search"""
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def on_prompt_selected():
|
| 137 |
+
title = st.session_state.advanced_prompts_select
|
| 138 |
+
new_prompt = utils.get_prompt(title)
|
| 139 |
+
if len(new_prompt)>0 and len(new_prompt[0])>0:
|
| 140 |
+
print(f"Got a prompt for title {title}\n {new_prompt[0]}")
|
| 141 |
+
st.session_state.prompt_title_editable = st.session_state.advanced_prompts_select
|
| 142 |
+
st.session_state.advanced_prompt_content = new_prompt[0]
|
| 143 |
+
else:
|
| 144 |
+
print(f"No results for title {st.session_state.advanced_prompts_select}")
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|