semsearch / openai_utils.py
hanoch.rahimi@gmail
assistant wip
d54eee9
raw
history blame
5.07 kB
import time
import openai
import requests
import streamlit as st
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"] # app.pinecone.io
OPENAI_ORGANIZATION_ID = st.secrets["OPENAI_ORGANIZATION_ID"]
headers = {"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
SEED = 42
def get_client():
return openai.OpenAI(api_key = OPENAI_API_KEY,organization=OPENAI_ORGANIZATION_ID)
def call_openai(prompt, engine="gpt-3.5-turbo", temp=0, top_p=1.0, max_tokens=4048):
if st.session_state.report_type=="assistant":
try:
thread = st.session_state.assistant_thread
assistant_id = st.session_state.assistant_id
message = st.session_state.openai_client.beta.threads.messages.create(
thread.id,
role="user",
content=prompt,
)
run = st.session_state.openai_client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant_id,
instructions="Please address the user as Dan"
)
messages = []
while True:
# Retrieve the run status
run_status = st.session_state.openai_client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id
)
# Check and print the step details
run_steps = st.session_state.openai_client.beta.threads.runs.steps.list(
thread_id=thread.id,
run_id=run.id
)
for step in run_steps.data:
if step.type == 'tool_calls':
print(f"Tool {step.type} invoked.")
# If step involves code execution, print the code
if step.type == 'code_interpreter':
print(f"Python Code Executed: {step.step_details['code_interpreter']['input']}")
if run_status.status == 'completed':
# Retrieve all messages from the thread
messages = st.session_state.openai_client.beta.threads.messages.list(
thread_id=thread.id
)
# Print all messages from the thread
for msg in messages.data:
role = msg.role
content = msg.content[0].text.value
print(f"{role.capitalize()}: {content}")
break # Exit the polling loop since the run is complete
elif run_status.status in ['queued', 'in_progress']:
print(f'{run_status.status.capitalize()}... Please wait.')
time.sleep(1.5) # Wait before checking again
else:
print(f"Run status: {run_status.status}")
break # Exit the polling loop if the status is neither 'in_progress' nor 'completed'
print(f"====================\nOpen AI response\n {messages}\n====================\n")
text = ""
for message in messages:
text = text + "\n" + message.content[0].text.value
return text
except Exception as e:
#except openai.error.OpenAIError as e:
print(f"An error occurred: {str(e)}")
else:
try:
response = st.session_state.openai_client.chat.completions.create(
model=engine,
messages=st.session_state.messages + [{"role": "user", "content": prompt}],
temperature=temp,
seed = SEED,
max_tokens=max_tokens
)
print(f"====================\nOpen AI response\n {response}\n====================\n")
text = response.choices[0].message.content.strip()
return text
except Exception as e:
#except openai.error.OpenAIError as e:
print(f"An error occurred: {str(e)}")
return "Failed to generate a response."
def get_assistant(assistant_id):
return st.session_state.openai_client.beta.assistants.retrieve(assistant_id)
def send_message(role, content):
message = st.session_state.openai_client.beta.threads.messages.create(
thread_id=st.session_state.assistant_thread.id,
role=role,
content=content
)
def start_conversation():
st.session_state.assistant_thread = st.session_state.openai_client.beta.threads.create()
def run_assistant():
run = st.session_state.openai_client.beta.threads.runs.create(
thread_id=st.session_state.assistant_thread.id,
assistant_id=st.session_state.assistant.id,
)
while run.status == "queued" or run.status == "in_progress":
run = st.session_state.openai_client.beta.threads.runs.retrieve(
thread_id=st.session_state.assistant_thread.id,
run_id=run.id,
)
time.sleep(0.5)
return run