import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_checkpoint = "hamzamalik11/Biobart_radiology_summarization" model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) from transformers import SummarizationPipeline summarizer = SummarizationPipeline(model=model, tokenizer=tokenizer) import gradio as gr examples = [ "heart mediastinal contours normal left sided subclavian line position tip distal svc lungs remain clear active disease effusions", "prevoid bladder volume cc postvoid bladder volume cc bladder grossly normal appearance" ] description = """ THIS MODEL SUMMARIZE FINDINGS OF RADIOLOGY REPORTS INTO IMPRESSIONS Enter a findings of radiology report to see the generated impression! """ def summarize(radiology_report): summary = summarizer(radiology_report)[0]['summary_text'] return summary iface = gr.Interface(fn=summarize, inputs=gr.inputs.Textbox(lines=5, label="Radiology Report"), outputs=gr.outputs.Textbox(label="Summary"), examples=examples, title="Radiology Report Summarization", description=description, theme="huggingface") if __name__ == "__main__": iface.launch(share=False)