hamzamalik11 commited on
Commit
49f1dbf
·
1 Parent(s): 5217b68

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -26
app.py CHANGED
@@ -1,32 +1,35 @@
1
-
2
  import gradio as gr
3
- from transformers import pipeline
4
- from transformers import SummarizationPipeline
5
-
6
- #summarizer = SummarizationPipeline(model="hamzamalik11/Biobart_radiology_summarization", task="summarization", tokenizer="hamzamalik11/Biobart_radiology_summarization")
7
-
8
- pipeline = pipeline(task="summarization", model="hamzamalik11/Biobart_radiology_summarization")
9
 
10
- def greet(RADIOLOGY_REPORT):
11
- summary_output= pipeline(RADIOLOGY_REPORT)
12
- return summary_output
13
 
14
- findings_examples = [
15
- "prevoid bladder volume cc postvoid bladder volume cc bladder grossly normal appearance",
16
- "heart mediastinal contours normal left sided subclavian line position tip distal svc lungs remain clear active disease effusions",
17
- '''heart size normal mediastinal hilar contours remain stable small right pneumothorax remains unchanged surgical lung staples overlying
18
- left upper lobe seen linear pattern consistent prior upper lobe resection soft tissue osseous structures appear unremarkable nasogastric
19
- endotracheal tubes remain satisfactory position atelectatic changes right lower lung field remain unchanged prior study''',
20
- ]
21
-
22
- radiology_demo = gr.Interface(fn=greet, inputs="text", outputs="text",
23
- examples=findings_examples,
24
- description=""" -------------RADIOLOGY REPORT SUMMARIZATION----------------
25
- ENTER YOUR FINDINGS IN RADIOLOGY REPORT SECTION & MODEL WILL PROVIDE YOU IMPRESSIONS AS AN OUTPUT""",
26
-
27
- )
28
 
29
- demo = gr.TabbedInterface([radiology_demo])
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  if __name__ == "__main__":
32
- demo.launch( share = True)
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
 
 
 
 
 
3
 
4
+ model_checkpoint = "hamzamalik11/Biobart_radiology_summarization"
5
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
6
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
7
 
8
+ from transformers import SummarizationPipeline
9
+ summarizer = SummarizationPipeline(model=model, tokenizer=tokenizer)
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ import gradio as gr
12
 
13
+ examples = [ "heart mediastinal contours normal left sided subclavian line position tip distal svc lungs remain clear active disease effusions",
14
+ "prevoid bladder volume cc postvoid bladder volume cc bladder grossly normal appearance"
15
+ ]
16
+
17
+ description = """
18
+ THIS MODEL SUMMARIZE FINDINGS OF RADIOLOGY REPORTS INTO IMPRESSIONS
19
+ <b>Enter a findings of radiology report to see the generated impression!</b>
20
+ """
21
+
22
+ def summarize(radiology_report):
23
+ summary = summarizer(radiology_report)[0]['summary_text']
24
+ return summary
25
+
26
+ iface = gr.Interface(fn=summarize,
27
+ inputs=gr.inputs.Textbox(lines=5, label="Radiology Report"),
28
+ outputs=gr.outputs.Textbox(label="Summary"),
29
+ examples=examples,
30
+ title="Radiology Report Summarization",
31
+ description=description,
32
+ theme="huggingface")
33
+
34
  if __name__ == "__main__":
35
+ iface.launch(share=False)