Spaces:
Runtime error
Runtime error
File size: 10,256 Bytes
93b46fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Hamza Farooq
"""
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from string import punctuation
from collections import Counter
from heapq import nlargest
import os
nlp = spacy.load("en_core_web_sm")
from spacy import displacy
import streamlit as st
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from matplotlib import pyplot as plt
import nltk
# import utils as utl
import time
import torch
import transformers
from transformers import BartTokenizer, BartForConditionalGeneration
from string import punctuation
# tr = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import scipy.spatial
import pickle as pkl
from sentence_transformers import SentenceTransformer, util
import torch
def main():
# Settings
st.set_page_config(layout="wide", page_title='Paris Hotel Finder', page_icon="🎈" )
from string import punctuation
punctuation=punctuation+ '\n'
# def bart_summarize(text, num_beams=20, length_penalty=2, max_length=2048, min_length=56, no_repeat_ngram_size=2):
#
# text = text.replace('\n','')
# text_input_ids = tr.batch_encode_plus([text], return_tensors='pt', max_length=1024)['input_ids'].to(torch_device)
# summary_ids = mdl.generate(text_input_ids, num_beams=int(num_beams), length_penalty=float(length_penalty), max_length=int(max_length), min_length=int(min_length), no_repeat_ngram_size=int(no_repeat_ngram_size))
# summary_txt = tr.decode(summary_ids.squeeze(), skip_special_tokens=True)
# return summary_txt
from sentence_transformers import SentenceTransformer, util
import torch
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import scipy.spatial
import pickle as pkl
from sentence_transformers import SentenceTransformer, util
import torch
#import os
@st.cache(allow_output_mutation=True)
def load_model():
return SentenceTransformer('all-MiniLM-L6-v2')
embedder = load_model()
# embedder = SentenceTransformer('all-MiniLM-L6-v2')
# gc = geonamescache.GeonamesCache()
#
# # gets nested dictionary for countries
# countries = gc.get_countries()
#
# # gets nested dictionary for cities
# cities = gc.get_cities()
# def gen_dict_extract(var, key):
# if isinstance(var, dict):
# for k, v in var.items():
# if k == key:
# yield v
# if isinstance(v, (dict, list)):
# yield from gen_dict_extract(v, key)
# elif isinstance(var, list):
# for d in var:
# yield from gen_dict_extract(d, key)
#
# cities = [*gen_dict_extract(cities, 'name')]
# countries = [*gen_dict_extract(countries, 'name')]
#
# cities.append('New York')
# mask = np.array(Image.open('upvote.png'))
#original_title = '<p style="font-family:IBM Mono; color:Blue; font-size: 20px;">Original image</p>'
st.title("Parisian Hotel Finder")
with st.expander("ℹ️ - About this app", expanded=True):
st.write(
"""
- This app allows you to search for hotels based on what you're looking for, rather than just cities - it helps with reducing time to go through exhaustive reviews for each hotel!
- It uses an innovative semantic search approach that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) 🤗.
"""
)
punctuation=punctuation+ '\n'
#import os
# embedder = SentenceTransformer('all-MiniLM-L6-v2')
df_all = pd.read_csv('combined_paris.csv')
df_all = df_all[['Hotel','review']]
df_all = df_all.drop_duplicates()
df_all = df_all.reset_index(drop=True)
summary_hotel = pd.read_csv('df_combined_paris.csv')
#
# df['hotel_name'].drop_duplicates()
df_combined = df_all.sort_values(['Hotel']).groupby('Hotel', sort=False).review.apply(''.join).reset_index(name='all_review')
import re
# df_combined = pd.read_csv('df_combined.csv')
df_combined['all_review'] = df_combined['all_review'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','',x))
def lower_case(input_str):
input_str = input_str.lower()
return input_str
df_combined['all_review']= df_combined['all_review'].apply(lambda x: lower_case(x))
df = df_combined
df_sentences = df_combined.set_index("all_review")
df_sentences = df_sentences["Hotel"].to_dict()
df_sentences_list = list(df_sentences.keys())
import pandas as pd
from tqdm import tqdm
from sentence_transformers import SentenceTransformer, util
df_sentences_list = [str(d) for d in tqdm(df_sentences_list)]
#
corpus = df_sentences_list
# corpus_embeddings = embedder.encode(corpus,show_progress_bar=True)
corpus_embeddings = np.load('embeddings_review.npy')
corpus_embeddings_h = np.load('embeddings_h_r.npy')
#
# model = SentenceTransformer('all-MiniLM-L6-v2')
# paraphrases = util.paraphrase_mining(model, corpus)
#queries = ['Hotel close to Central Park',
# 'Hotel with breakfast'
# ]
# from transformers import AutoTokenizer, AutoModel
# import torch
# import torch.nn.functional as F
#
# #Mean Pooling - Take attention mask into account for correct averaging
# def mean_pooling(model_output, attention_mask):
# token_embeddings = model_output[0] #First element of model_output contains all token embeddings
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
# return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
#
#
# # Sentences we want sentence embeddings for
# sentences = corpus
#
# # Load model from HuggingFace Hub
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L12-v1')
# model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L12-v1')
#
# # Tokenize sentences
# encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
#
# # Compute token embeddings
# with torch.no_grad():
# model_output = model(**encoded_input)
#
# # Perform pooling
# sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
#
# # Normalize embeddings
# sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
#
# st.text("Sentence embeddings:")
# st.text(sentence_embeddings)
#
#
#corpus_embeddings = sentence_embeddings
# Query sentences
def plot_cloud(wordcloud):
# Set figure size
st.pyplot.figure(figsize=(20, 10))
# Display image
st.pyplot(wordcloud)
# No axis details
#st.pyplot.axis("off");
sampletext = 'e.g. Hotel near Eiffel Tower with big rooms'
userinput = st.text_input('Tell us what are you looking in your hotel?','e.g. Hotel near Eiffel Tower with big rooms',autocomplete="on")
if not userinput or userinput == sampletext:
st.write("Please enter a query to get results")
else:
query = [str(userinput)]
doc = nlp(str(userinput))
# for ent in doc.ents:
# if ent.label_ == 'GPE':
# if ent.text in countries:
# st.write(f"Country : {ent.text}")
# elif ent.text in cities:
# st.write("city")
# st.write(ent.text)
# st.write(f"City : {ent.text}")
# else:
# print(f"Other GPE : {ent.text}")
# query_embeddings = embedder.encode(queries,show_progress_bar=True)
top_k = min(5, len(corpus))
query_embedding = embedder.encode(query, convert_to_tensor=True)
# We use cosine-similarity and torch.topk to find the highest 5 scores
cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
top_results = torch.topk(cos_scores, k=top_k)
# st.write("\n\n======================\n\n")
# st.write("Query:", query)
# # doc = nlp(query)
sentence_spans = list(doc.sents)
ent_html = displacy.render(doc, style="ent", jupyter=False)
# Display the entity visualization in the browser:
st.markdown(ent_html, unsafe_allow_html=True)
#displacy.render(doc, jupyter = True, style="ent")
st.write("##")
st.subheader("\n\n\n\n\n\nTop 5 most relevant hotels:\n\n\n\n\n\n\n")
st.write("\n\n======================\n\n")
for score, idx in zip(top_results[0], top_results[1]):
row_dict = df.loc[df['all_review']== corpus[idx]]
st.subheader(row_dict['Hotel'].values[0])
hotel_subset = df_all.loc[df_all['Hotel']==row_dict['Hotel'].values[0]]
hotel_sub = summary_hotel.loc[summary_hotel['Hotel']==row_dict['Hotel'].values[0]]
st.caption("Review Summary:")
st.write(hotel_sub['summary'].values[0])
st.caption("Relevancy: {:.4f}".format(score))
st.caption("Relevant reviews:")
df_sentences_h = hotel_subset.set_index("review")
df_sentences_h = df_sentences_h["Hotel"].to_dict()
df_sentences_list_h = list(df_sentences_h.keys())
df_sentences_list_h = [str(d) for d in tqdm(df_sentences_list_h)]
#
corpus_h = df_sentences_list_h
# corpus_embeddings_h = embedder.encode(corpus_h,show_progress_bar=True)
sublist = [element for i, element in enumerate(corpus_embeddings_h) if i in (df_all[df_all['Hotel'] == row_dict['Hotel'].values[0]].index.values)]
cos_scores_h = util.pytorch_cos_sim(query_embedding, sublist)[0]
top_results_h = torch.topk(cos_scores_h, k=top_k)
for score, idx in zip(top_results_h[0], top_results_h[1]):
st.write(corpus_h[idx])
if __name__ == '__main__':
main()
|