hammammahdy's picture
first commit
72ca364
# import libraries
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
from PIL import Image
def run():
# membuat title
st.title('Heart Disease Prediction')
# membuat subheader
st.subheader('EDA untuk analisa dataset heart disease classification')
# menambahkan gambar
image = Image.open('heart_disease_1.jpeg')
st.image(image, caption = 'Heart Disease')
# menambahkan deskripsi
st.write('Web App ini berfungsi untuk memprediksi penyakit jantung menggunakan machine learning (by: Hammam Mahdy)')
# membuat markdown
st.markdown('---------------')
# dataframe
df = pd.read_csv('Heart Attack.csv')
# membuat bar plot
st.write('#### Plot Gender')
fig = plt.figure(figsize=(15,5))
sns.countplot(x=df['gender'], data=df)
# membuat histogram plot
st.write('#### Histogram Age')
fig = plt.figure(figsize=(15,5))
sns.histplot(df['age'], bins=30, kde=True)
st.pyplot(fig)
# membuat bar plot berdasarkan inputan user
st.write('#### Bar Plot berdasarkan pilihan user')
option = st.selectbox('pilih column :', ('gender', 'class'))
fig = plt.figure(figsize=(15,5))
sns.countplot(x=option, data=df)
st.pyplot(fig)
# membuat histogram berdasarkan inputan user
st.write('#### Histogram Plot berdasarkan pilihan user')
option = st.selectbox('pilih column :', ('age', 'impluse', 'pressurehight', 'pressurelow', 'glucose', 'kcm', 'troponin'))
fig = plt.figure(figsize=(15,5))
sns.histplot(df[option], bins=30, kde=True)
st.pyplot(fig)
if __name__ == '__main__':
run()