import streamlit as st import pandas as pd import numpy as np import pickle import json import sklearn def run(): with st.form('form-fifa_2022'): #field nama name = st.text_input('Name', value='') #field umur age = st.number_input('Age', min_value=16, max_value=60, value = 25, step=1, help='Usia pemain') #field tinggi badan height = st.slider('Height', 100, 250, 170) #field weight weight = st.number_input('Weight', 50, 150, 70) #field price price = st.number_input('Price', value=0) st.markdown('-----') #field attacking work rate attacking_work_rate = st.selectbox('Attacking Work Rate', ('Low', 'Medium', 'High'), index=1) #field defensive work rate defensive_work_rate = st.selectbox('Defensive Work Rate', ('Low', 'Medium', 'High'), index=1) #field pace total pace_total = st.number_input('Pace', min_value=0, max_value=100, value=50) #field shooting total shooting_total = st.number_input('Shooting', min_value=0, max_value=100, value=50) #filed passing total passing_total = st.number_input('Passing', min_value=0, max_value=100, value=50) #field dribbling total dribbling_total = st.number_input('Dribbling', min_value=0, max_value=100, value=50) #filed defending total defending_total = st.number_input('Defending', min_value=0, max_value=100, value=50) #field physicality physicality = st.number_input('Physicality', min_value=0, max_value=100, value=50) #bikin submit button submitted = st.form_submit_button('Predict') #inference #load all files with open('list_cat_cols.txt', 'r') as file_1: list_cat_cols = json.load(file_1) with open('list_num_cols.txt', 'r') as file_2: list_num_cols = json.load(file_2) with open('model_scaler.pkl', 'rb') as file_3: model_scaler = pickle.load(file_3) with open('model_encoder.pkl', 'rb') as file_4: model_encoder = pickle.load(file_4) with open('model_lin_reg.pkl', 'rb') as file_5: model_lin_reg = pickle.load(file_5) data_inf = { 'Name' : name, 'Age' : age, 'Height' : height, 'Weight' : weight, 'Price' : price, 'AttackingWorkRate' : attacking_work_rate, 'DefensiveWorkRate' : defensive_work_rate, 'PaceTotal' :pace_total, 'ShootingTotal': shooting_total, 'PassingTotal' : passing_total, 'DribblingTotal': dribbling_total, 'DefendingTotal' :defending_total, 'PhysicalityTotal':physicality, } data_inf = pd.DataFrame([data_inf]) st.dataframe(data_inf) #logic ketika predic button ditekan if submitted: #split between numerical and categorical collumn data_inf_num = data_inf[list_num_cols] data_inf_cat = data_inf[list_cat_cols] #scalling dan encoding data_inf_num_scaled = model_scaler.transform(data_inf_num) data_inf_cat_encoded = model_encoder.transform(data_inf_cat) data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis = 1) #preedict using linear reg model y_pred_inf = model_lin_reg.predict(data_inf_final) st.write('## Rating :', str(int(y_pred_inf))) if __name__ == '__main__': run()