Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import json | |
import sklearn | |
def run(): | |
with st.form('form-fifa_2022'): | |
#field nama | |
name = st.text_input('Name', value='') | |
#field umur | |
age = st.number_input('Age', min_value=16, max_value=60, value = 25, step=1, help='Usia pemain') | |
#field tinggi badan | |
height = st.slider('Height', 100, 250, 170) | |
#field weight | |
weight = st.number_input('Weight', 50, 150, 70) | |
#field price | |
price = st.number_input('Price', value=0) | |
st.markdown('-----') | |
#field attacking work rate | |
attacking_work_rate = st.selectbox('Attacking Work Rate', ('Low', 'Medium', 'High'), index=1) | |
#field defensive work rate | |
defensive_work_rate = st.selectbox('Defensive Work Rate', ('Low', 'Medium', 'High'), index=1) | |
#field pace total | |
pace_total = st.number_input('Pace', min_value=0, max_value=100, value=50) | |
#field shooting total | |
shooting_total = st.number_input('Shooting', min_value=0, max_value=100, value=50) | |
#filed passing total | |
passing_total = st.number_input('Passing', min_value=0, max_value=100, value=50) | |
#field dribbling total | |
dribbling_total = st.number_input('Dribbling', min_value=0, max_value=100, value=50) | |
#filed defending total | |
defending_total = st.number_input('Defending', min_value=0, max_value=100, value=50) | |
#field physicality | |
physicality = st.number_input('Physicality', min_value=0, max_value=100, value=50) | |
#bikin submit button | |
submitted = st.form_submit_button('Predict') | |
#inference | |
#load all files | |
with open('list_cat_cols.txt', 'r') as file_1: | |
list_cat_cols = json.load(file_1) | |
with open('list_num_cols.txt', 'r') as file_2: | |
list_num_cols = json.load(file_2) | |
with open('model_scaler.pkl', 'rb') as file_3: | |
model_scaler = pickle.load(file_3) | |
with open('model_encoder.pkl', 'rb') as file_4: | |
model_encoder = pickle.load(file_4) | |
with open('model_lin_reg.pkl', 'rb') as file_5: | |
model_lin_reg = pickle.load(file_5) | |
data_inf = { | |
'Name' : name, | |
'Age' : age, | |
'Height' : height, | |
'Weight' : weight, | |
'Price' : price, | |
'AttackingWorkRate' : attacking_work_rate, | |
'DefensiveWorkRate' : defensive_work_rate, | |
'PaceTotal' :pace_total, | |
'ShootingTotal': shooting_total, | |
'PassingTotal' : passing_total, | |
'DribblingTotal': dribbling_total, | |
'DefendingTotal' :defending_total, | |
'PhysicalityTotal':physicality, | |
} | |
data_inf = pd.DataFrame([data_inf]) | |
st.dataframe(data_inf) | |
#logic ketika predic button ditekan | |
if submitted: | |
#split between numerical and categorical collumn | |
data_inf_num = data_inf[list_num_cols] | |
data_inf_cat = data_inf[list_cat_cols] | |
#scalling dan encoding | |
data_inf_num_scaled = model_scaler.transform(data_inf_num) | |
data_inf_cat_encoded = model_encoder.transform(data_inf_cat) | |
data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis = 1) | |
#preedict using linear reg model | |
y_pred_inf = model_lin_reg.predict(data_inf_final) | |
st.write('## Rating :', str(int(y_pred_inf))) | |
if __name__ == '__main__': | |
run() |