import gradio as gr import tensorflow as tf model = tf.saved_model.load('arabert_pretrained') import pandas as pd df = pd.read_csv('put\data_cleaned1.csv') from transformers import TFAutoModel, AutoTokenizer arabert_tokenizer = AutoTokenizer.from_pretrained('aubmindlab/bert-base-arabert') import pandas as pd # Assuming your DataFrame is named 'df' # Split the DataFrame into two parts: label=1 and label=0 label_1_df = df[df['data_labels'] == 1] label_0_df = df[df['data_labels'] == 0] # Sample an equal number of rows from each label sample_size = min(len(label_1_df), len(label_0_df)) sample_label_1 = label_1_df.sample(n=sample_size, random_state=42) sample_label_0 = label_0_df.sample(n=sample_size, random_state=42) # Concatenate the two samples to get the final balanced sample balanced_sample = pd.concat([sample_label_1, sample_label_0]) # Shuffle the rows in the balanced sample balanced_sample = balanced_sample.sample(frac=1, random_state=42) balanced_sample.reset_index(inplace=True,drop=True) from sklearn.model_selection import train_test_split tweets = balanced_sample['cleaned_text'] labels = balanced_sample['data_labels'] X_train, X_test, y_train, y_test = train_test_split(tweets, labels,stratify=labels, test_size=0.15, random_state=1) def preprocess_input_data(texts, tokenizer, max_len=120): """Tokenize and preprocess the input data for Arabert model. Args: texts (list): List of text strings. tokenizer (AutoTokenizer): Arabert tokenizer from transformers library. max_len (int, optional): Maximum sequence length. Defaults to 120. Returns: Tuple of numpy arrays: Input token IDs and attention masks. """ # Tokenize the text data using the tokenizer tokenized_data = [tokenizer.encode_plus( t, max_length=max_len, pad_to_max_length=True, add_special_tokens=True) for t in texts] # Extract tokenized input IDs and attention masks input_ids = [data['input_ids'] for data in tokenized_data] attention_mask = [data['attention_mask'] for data in tokenized_data] return input_ids, attention_mask def sentiment_analysis(text): X_input_ids, X_attention_mask = preprocess_input_data(text, arabert_tokenizer) predictions = modelez(X_input_ids) a=predictions.numpy() return a import gradio as gr iface = gr.Interface(fn=sentiment_analysis, inputs="text", outputs="text") iface.launch()