Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
model = tf.saved_model.load('arabert_pretrained') | |
import pandas as pd | |
df = pd.read_csv('put\data_cleaned1.csv') | |
from transformers import TFAutoModel, AutoTokenizer | |
arabert_tokenizer = AutoTokenizer.from_pretrained('aubmindlab/bert-base-arabert') | |
import pandas as pd | |
# Assuming your DataFrame is named 'df' | |
# Split the DataFrame into two parts: label=1 and label=0 | |
label_1_df = df[df['data_labels'] == 1] | |
label_0_df = df[df['data_labels'] == 0] | |
# Sample an equal number of rows from each label | |
sample_size = min(len(label_1_df), len(label_0_df)) | |
sample_label_1 = label_1_df.sample(n=sample_size, random_state=42) | |
sample_label_0 = label_0_df.sample(n=sample_size, random_state=42) | |
# Concatenate the two samples to get the final balanced sample | |
balanced_sample = pd.concat([sample_label_1, sample_label_0]) | |
# Shuffle the rows in the balanced sample | |
balanced_sample = balanced_sample.sample(frac=1, random_state=42) | |
balanced_sample.reset_index(inplace=True,drop=True) | |
from sklearn.model_selection import train_test_split | |
tweets = balanced_sample['cleaned_text'] | |
labels = balanced_sample['data_labels'] | |
X_train, X_test, y_train, y_test = train_test_split(tweets, labels,stratify=labels, test_size=0.15, random_state=1) | |
def preprocess_input_data(texts, tokenizer, max_len=120): | |
"""Tokenize and preprocess the input data for Arabert model. | |
Args: | |
texts (list): List of text strings. | |
tokenizer (AutoTokenizer): Arabert tokenizer from transformers library. | |
max_len (int, optional): Maximum sequence length. Defaults to 120. | |
Returns: | |
Tuple of numpy arrays: Input token IDs and attention masks. | |
""" | |
# Tokenize the text data using the tokenizer | |
tokenized_data = [tokenizer.encode_plus( | |
t, | |
max_length=max_len, | |
pad_to_max_length=True, | |
add_special_tokens=True) for t in texts] | |
# Extract tokenized input IDs and attention masks | |
input_ids = [data['input_ids'] for data in tokenized_data] | |
attention_mask = [data['attention_mask'] for data in tokenized_data] | |
return input_ids, attention_mask | |
def sentiment_analysis(text): | |
X_input_ids, X_attention_mask = preprocess_input_data(text, arabert_tokenizer) | |
predictions = modelez(X_input_ids) | |
a=predictions.numpy() | |
return a | |
import gradio as gr | |
iface = gr.Interface(fn=sentiment_analysis, inputs="text", outputs="text") | |
iface.launch() |