Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline | |
from scrapegraphai.graphs import SmartScraperGraph | |
import torch | |
# Page config | |
st.set_page_config( | |
page_title="Zephyr Chat & Scrape", | |
page_icon="π€", | |
layout="wide" | |
) | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "scrape_results" not in st.session_state: | |
st.session_state.scrape_results = None | |
# Load Zephyr model | |
def load_model(): | |
return pipeline( | |
"text-generation", | |
model="HuggingFaceH4/zephyr-7b-beta", | |
torch_dtype=torch.float16, | |
device_map="auto", | |
) | |
# Initialize the model | |
model = load_model() | |
# Sidebar for web scraping | |
with st.sidebar: | |
st.title("Web Scraping") | |
url = st.text_input("Enter URL to scrape") | |
scrape_prompt = st.text_input("What information do you want to extract?") | |
if st.button("Scrape"): | |
try: | |
# Configure scraper | |
graph_config = { | |
"llm": { | |
"model": "HuggingFaceH4/zephyr-7b-beta", | |
"temperature": 0.7, | |
}, | |
"verbose": True | |
} | |
# Create scraper instance | |
scraper = SmartScraperGraph( | |
prompt=scrape_prompt, | |
source=url, | |
config=graph_config | |
) | |
# Run scraping | |
st.session_state.scrape_results = scraper.run() | |
st.success("Scraping completed!") | |
except Exception as e: | |
st.error(f"Error during scraping: {str(e)}") | |
# Main chat interface | |
st.title("Zephyr Chatbot π€") | |
# Display scraped results if available | |
if st.session_state.scrape_results: | |
st.subheader("Scraped Information") | |
st.json(st.session_state.scrape_results) | |
# Display chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Chat input | |
if prompt := st.chat_input("What's on your mind?"): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Generate response | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
# Include scraped content in context if available | |
context = "" | |
if st.session_state.scrape_results: | |
context = f"Scraped information: {str(st.session_state.scrape_results)}\n" | |
full_prompt = f"{context}User: {prompt}\nAssistant:" | |
response = model( | |
full_prompt, | |
max_length=1000, | |
temperature=0.7, | |
top_p=0.95, | |
repetition_penalty=1.15 | |
)[0]["generated_text"] | |
# Clean up response to get only the assistant's reply | |
response = response.split("Assistant:")[-1].strip() | |
st.markdown(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) |