halimbahae commited on
Commit
518640f
·
verified ·
1 Parent(s): 9d9df64

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -62
app.py CHANGED
@@ -1,64 +1,57 @@
1
- import gradio as gr
 
 
 
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ # Import the required libraries
2
+ import streamlit as st
3
+ from phi.assistant import Assistant
4
+ from phi.tools.arxiv_toolkit import ArxivToolkit
5
  from huggingface_hub import InferenceClient
6
 
7
+ # Initialize the Hugging Face Inference Client
8
+ client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta")
9
+
10
+ # Set up the Streamlit app
11
+ st.set_page_config(page_title="Chat with Research Papers", layout="wide")
12
+ st.title("Chat with Research Papers 🔎🤖")
13
+ st.caption("This app allows you to chat with arXiv research papers using the Zephyr model hosted on Hugging Face.")
14
+
15
+ # Sidebar Configuration
16
+ st.sidebar.header("Settings")
17
+ temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.7, 0.1)
18
+ top_p = st.sidebar.slider("Top-p", 0.0, 1.0, 0.95, 0.05)
19
+ max_tokens = st.sidebar.slider("Max Tokens", 100, 1024, 512, 50)
20
+
21
+ # Initialize Assistant with Arxiv Toolkit
22
+ assistant = Assistant(llm=client, tools=[ArxivToolkit()])
23
+
24
+ # Get the search query from the user
25
+ query = st.text_input("Enter your research query or topic:")
26
+
27
+ if st.button("Search") and query:
28
+ with st.spinner("Searching arXiv and generating a response..."):
29
+ # Prepare messages for the chat
30
+ messages = [
31
+ {"role": "system", "content": "You are a helpful assistant for arXiv research."},
32
+ {"role": "user", "content": query}
33
+ ]
34
+
35
+ # Generate response using Zephyr
36
+ response = ""
37
+ for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
38
+ token = message.choices[0].delta.content
39
+ response += token
40
+
41
+ # Search arXiv and parse results
42
+ arxiv_results = assistant.run(f"Search arxiv for '{query}'", stream=False)
43
+
44
+ # Display the response
45
+ st.subheader("Model Response")
46
+ st.write(response)
47
+
48
+ # Display arXiv results
49
+ st.subheader("ArXiv Search Results")
50
+ if arxiv_results:
51
+ for paper in arxiv_results:
52
+ with st.expander(paper['title']):
53
+ st.write(f"**Authors:** {', '.join(paper['authors'])}")
54
+ st.write(f"**Abstract:** {paper['summary']}")
55
+ st.write(f"[Read More]({paper['link']})")
56
+ else:
57
+ st.write("No results found.")