File size: 8,526 Bytes
36c5bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
import cv2
from scipy.fftpack import fft2, fftshift
from skimage.feature import graycomatrix, graycoprops, local_binary_pattern
import timm
import gradio as gr

# GLCM feature extraction
def extract_glcm_features(image):
    image_uint8 = (image * 255).astype(np.uint8)
    image_uint8 = image_uint8 // 4

    glcm = graycomatrix(
        image_uint8,
        distances=[1],
        angles=[0, np.pi / 4, np.pi / 2, 3 * np.pi / 4],
        levels=64,
        symmetric=True,
        normed=True
    )

    contrast = graycoprops(glcm, 'contrast').flatten()
    dissimilarity = graycoprops(glcm, 'dissimilarity').flatten()
    homogeneity = graycoprops(glcm, 'homogeneity').flatten()
    energy = graycoprops(glcm, 'energy').flatten()
    correlation = graycoprops(glcm, 'correlation').flatten()

    features = np.hstack([contrast, dissimilarity, homogeneity, energy, correlation])
    return features.astype(np.float32)

# Spectrum analysis
def analyze_spectrum(image, target_spectrum_length=181):
    f = fft2(image)
    fshift = fftshift(f)
    magnitude_spectrum = 20 * np.log(np.abs(fshift) + 1e-8)

    center = np.array(magnitude_spectrum.shape) // 2
    y, x = np.indices(magnitude_spectrum.shape)
    r = np.sqrt((x - center[1])**2 + (y - center[0])**2).astype(int)

    radial_mean = np.bincount(r.ravel(), magnitude_spectrum.ravel()) / np.bincount(r.ravel())

    if len(radial_mean) < target_spectrum_length:
        radial_mean = np.pad(radial_mean, (0, target_spectrum_length - len(radial_mean)), 'constant')
    else:
        radial_mean = radial_mean[:target_spectrum_length]

    return radial_mean.astype(np.float32)

# Edge feature extraction
def extract_edge_features(image):
    image_uint8 = (image * 255).astype(np.uint8)
    edges = cv2.Canny(image_uint8, 100, 200)
    edges_resized = cv2.resize(edges, (64, 64), interpolation=cv2.INTER_AREA)
    return edges_resized.astype(np.float32) / 255.0

# LBP feature extraction
def extract_lbp_features(image):
    radius = 1
    n_points = 8 * radius
    METHOD = 'uniform'

    lbp = local_binary_pattern(image, n_points, radius, METHOD)
    n_bins = n_points + 2
    hist, _ = np.histogram(lbp.ravel(), bins=n_bins, range=(0, n_bins), density=True)

    return hist.astype(np.float32)

# Model architecture
class AttentionBlock(nn.Module):
    def __init__(self, in_features):
        super(AttentionBlock, self).__init__()
        self.attention = nn.Sequential(
            nn.Linear(in_features, max(in_features // 8, 1)),
            nn.ReLU(),
            nn.Linear(max(in_features // 8, 1), in_features),
            nn.Sigmoid()
        )

    def forward(self, x):
        attention_weights = self.attention(x)
        return x * attention_weights

class AdvancedFaceDetectionModel(nn.Module):
    def __init__(self, spectrum_length=181, lbp_n_bins=10):
        super(AdvancedFaceDetectionModel, self).__init__()

        self.efficientnet = timm.create_model('tf_efficientnetv2_b2', pretrained=False, num_classes=0)
        for param in self.efficientnet.conv_stem.parameters():
            param.requires_grad = False
        for param in self.efficientnet.bn1.parameters():
            param.requires_grad = False

        self.glcm_fc = nn.Sequential(
            nn.Linear(20, 64),
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.Dropout(0.5)
        )

        self.spectrum_conv = nn.Sequential(
            nn.Conv1d(1, 64, kernel_size=3, padding=1),
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.AdaptiveAvgPool1d(1)
        )

        self.edge_conv = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.AdaptiveAvgPool2d((8, 8))
        )

        self.lbp_fc = nn.Sequential(
            nn.Linear(lbp_n_bins, 64),
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.Dropout(0.5)
        )

        image_feature_size = self.efficientnet.num_features
        self.image_attention = AttentionBlock(image_feature_size)
        self.glcm_attention = AttentionBlock(64)
        self.spectrum_attention = AttentionBlock(64)
        self.edge_attention = AttentionBlock(32 * 8 * 8)
        self.lbp_attention = AttentionBlock(64)

        total_features = image_feature_size + 64 + 64 + (32 * 8 * 8) + 64
        self.fusion = nn.Sequential(
            nn.Linear(total_features, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(512, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(256, 1)
        )

    def forward(self, image, glcm_features, spectrum_features, edge_features, lbp_features):
        image_features = self.efficientnet(image)
        image_features = self.image_attention(image_features)

        glcm_features = self.glcm_fc(glcm_features)
        glcm_features = self.glcm_attention(glcm_features)

        spectrum_features = self.spectrum_conv(spectrum_features.unsqueeze(1))
        spectrum_features = spectrum_features.squeeze(2)
        spectrum_features = self.spectrum_attention(spectrum_features)

        edge_features = self.edge_conv(edge_features.unsqueeze(1))
        edge_features = edge_features.view(edge_features.size(0), -1)
        edge_features = self.edge_attention(edge_features)

        lbp_features = self.lbp_fc(lbp_features)
        lbp_features = self.lbp_attention(lbp_features)

        combined_features = torch.cat(
            (image_features, glcm_features, spectrum_features, edge_features, lbp_features), dim=1
        )

        output = self.fusion(combined_features)
        return output.squeeze(1)

# Initialize model and transform
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AdvancedFaceDetectionModel(spectrum_length=181, lbp_n_bins=10).to(device)
model.load_state_dict(torch.load('best_model.pth', map_location=device))
model.eval()

transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

def predict_image(image):
    """
    Process a single image and return prediction
    """
    # Convert to PIL Image if needed
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    # Convert to RGB if needed
    if image.mode != 'RGB':
        image = image.convert('RGB')
    
    # Apply transformations
    image_tensor = transform(image).unsqueeze(0)

    # Convert to NumPy array for feature extraction
    np_image = image_tensor.cpu().numpy().squeeze(0).transpose(1, 2, 0)
    np_image = np.clip(np_image, 0, 1)

    # Convert to grayscale
    gray_image = cv2.cvtColor((np_image * 255).astype(np.uint8), cv2.COLOR_RGB2GRAY)
    gray_image = gray_image.astype(np.float32) / 255.0

    # Extract features
    glcm_features = extract_glcm_features(gray_image)
    spectrum_features = analyze_spectrum(gray_image)
    edge_features = extract_edge_features(gray_image)
    lbp_features = extract_lbp_features(gray_image)

    # Move everything to device
    with torch.no_grad():
        image_tensor = image_tensor.to(device)
        glcm_features = torch.from_numpy(glcm_features).unsqueeze(0).to(device)
        spectrum_features = torch.from_numpy(spectrum_features).unsqueeze(0).to(device)
        edge_features = torch.from_numpy(edge_features).unsqueeze(0).to(device)
        lbp_features = torch.from_numpy(lbp_features).unsqueeze(0).to(device)

        # Forward pass
        outputs = model(image_tensor, glcm_features, spectrum_features, edge_features, lbp_features)
        probability = torch.sigmoid(outputs).item()
        prediction = "Real Face" if probability > 0.5 else "Fake Face"
        
        return prediction, f"Confidence: {probability:.2%}"

# Create Gradio interface
iface = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(type="pil"),
    outputs=[
        gr.Label(label="Prediction"),
        gr.Label(label="Confidence")
    ],
    title="Face Authentication System",
    description="Upload an image to determine if it contains a real or fake face.",
    examples=[
        ["example1.jpg"],
        ["example2.jpg"]
    ] if os.path.exists("example1.jpg") else None,
)

# Launch the app
if __name__ == "__main__":
    iface.launch()