File size: 8,526 Bytes
36c5bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
import cv2
from scipy.fftpack import fft2, fftshift
from skimage.feature import graycomatrix, graycoprops, local_binary_pattern
import timm
import gradio as gr
# GLCM feature extraction
def extract_glcm_features(image):
image_uint8 = (image * 255).astype(np.uint8)
image_uint8 = image_uint8 // 4
glcm = graycomatrix(
image_uint8,
distances=[1],
angles=[0, np.pi / 4, np.pi / 2, 3 * np.pi / 4],
levels=64,
symmetric=True,
normed=True
)
contrast = graycoprops(glcm, 'contrast').flatten()
dissimilarity = graycoprops(glcm, 'dissimilarity').flatten()
homogeneity = graycoprops(glcm, 'homogeneity').flatten()
energy = graycoprops(glcm, 'energy').flatten()
correlation = graycoprops(glcm, 'correlation').flatten()
features = np.hstack([contrast, dissimilarity, homogeneity, energy, correlation])
return features.astype(np.float32)
# Spectrum analysis
def analyze_spectrum(image, target_spectrum_length=181):
f = fft2(image)
fshift = fftshift(f)
magnitude_spectrum = 20 * np.log(np.abs(fshift) + 1e-8)
center = np.array(magnitude_spectrum.shape) // 2
y, x = np.indices(magnitude_spectrum.shape)
r = np.sqrt((x - center[1])**2 + (y - center[0])**2).astype(int)
radial_mean = np.bincount(r.ravel(), magnitude_spectrum.ravel()) / np.bincount(r.ravel())
if len(radial_mean) < target_spectrum_length:
radial_mean = np.pad(radial_mean, (0, target_spectrum_length - len(radial_mean)), 'constant')
else:
radial_mean = radial_mean[:target_spectrum_length]
return radial_mean.astype(np.float32)
# Edge feature extraction
def extract_edge_features(image):
image_uint8 = (image * 255).astype(np.uint8)
edges = cv2.Canny(image_uint8, 100, 200)
edges_resized = cv2.resize(edges, (64, 64), interpolation=cv2.INTER_AREA)
return edges_resized.astype(np.float32) / 255.0
# LBP feature extraction
def extract_lbp_features(image):
radius = 1
n_points = 8 * radius
METHOD = 'uniform'
lbp = local_binary_pattern(image, n_points, radius, METHOD)
n_bins = n_points + 2
hist, _ = np.histogram(lbp.ravel(), bins=n_bins, range=(0, n_bins), density=True)
return hist.astype(np.float32)
# Model architecture
class AttentionBlock(nn.Module):
def __init__(self, in_features):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Linear(in_features, max(in_features // 8, 1)),
nn.ReLU(),
nn.Linear(max(in_features // 8, 1), in_features),
nn.Sigmoid()
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
class AdvancedFaceDetectionModel(nn.Module):
def __init__(self, spectrum_length=181, lbp_n_bins=10):
super(AdvancedFaceDetectionModel, self).__init__()
self.efficientnet = timm.create_model('tf_efficientnetv2_b2', pretrained=False, num_classes=0)
for param in self.efficientnet.conv_stem.parameters():
param.requires_grad = False
for param in self.efficientnet.bn1.parameters():
param.requires_grad = False
self.glcm_fc = nn.Sequential(
nn.Linear(20, 64),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.Dropout(0.5)
)
self.spectrum_conv = nn.Sequential(
nn.Conv1d(1, 64, kernel_size=3, padding=1),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.AdaptiveAvgPool1d(1)
)
self.edge_conv = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.AdaptiveAvgPool2d((8, 8))
)
self.lbp_fc = nn.Sequential(
nn.Linear(lbp_n_bins, 64),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.Dropout(0.5)
)
image_feature_size = self.efficientnet.num_features
self.image_attention = AttentionBlock(image_feature_size)
self.glcm_attention = AttentionBlock(64)
self.spectrum_attention = AttentionBlock(64)
self.edge_attention = AttentionBlock(32 * 8 * 8)
self.lbp_attention = AttentionBlock(64)
total_features = image_feature_size + 64 + 64 + (32 * 8 * 8) + 64
self.fusion = nn.Sequential(
nn.Linear(total_features, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 1)
)
def forward(self, image, glcm_features, spectrum_features, edge_features, lbp_features):
image_features = self.efficientnet(image)
image_features = self.image_attention(image_features)
glcm_features = self.glcm_fc(glcm_features)
glcm_features = self.glcm_attention(glcm_features)
spectrum_features = self.spectrum_conv(spectrum_features.unsqueeze(1))
spectrum_features = spectrum_features.squeeze(2)
spectrum_features = self.spectrum_attention(spectrum_features)
edge_features = self.edge_conv(edge_features.unsqueeze(1))
edge_features = edge_features.view(edge_features.size(0), -1)
edge_features = self.edge_attention(edge_features)
lbp_features = self.lbp_fc(lbp_features)
lbp_features = self.lbp_attention(lbp_features)
combined_features = torch.cat(
(image_features, glcm_features, spectrum_features, edge_features, lbp_features), dim=1
)
output = self.fusion(combined_features)
return output.squeeze(1)
# Initialize model and transform
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AdvancedFaceDetectionModel(spectrum_length=181, lbp_n_bins=10).to(device)
model.load_state_dict(torch.load('best_model.pth', map_location=device))
model.eval()
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def predict_image(image):
"""
Process a single image and return prediction
"""
# Convert to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Apply transformations
image_tensor = transform(image).unsqueeze(0)
# Convert to NumPy array for feature extraction
np_image = image_tensor.cpu().numpy().squeeze(0).transpose(1, 2, 0)
np_image = np.clip(np_image, 0, 1)
# Convert to grayscale
gray_image = cv2.cvtColor((np_image * 255).astype(np.uint8), cv2.COLOR_RGB2GRAY)
gray_image = gray_image.astype(np.float32) / 255.0
# Extract features
glcm_features = extract_glcm_features(gray_image)
spectrum_features = analyze_spectrum(gray_image)
edge_features = extract_edge_features(gray_image)
lbp_features = extract_lbp_features(gray_image)
# Move everything to device
with torch.no_grad():
image_tensor = image_tensor.to(device)
glcm_features = torch.from_numpy(glcm_features).unsqueeze(0).to(device)
spectrum_features = torch.from_numpy(spectrum_features).unsqueeze(0).to(device)
edge_features = torch.from_numpy(edge_features).unsqueeze(0).to(device)
lbp_features = torch.from_numpy(lbp_features).unsqueeze(0).to(device)
# Forward pass
outputs = model(image_tensor, glcm_features, spectrum_features, edge_features, lbp_features)
probability = torch.sigmoid(outputs).item()
prediction = "Real Face" if probability > 0.5 else "Fake Face"
return prediction, f"Confidence: {probability:.2%}"
# Create Gradio interface
iface = gr.Interface(
fn=predict_image,
inputs=gr.Image(type="pil"),
outputs=[
gr.Label(label="Prediction"),
gr.Label(label="Confidence")
],
title="Face Authentication System",
description="Upload an image to determine if it contains a real or fake face.",
examples=[
["example1.jpg"],
["example2.jpg"]
] if os.path.exists("example1.jpg") else None,
)
# Launch the app
if __name__ == "__main__":
iface.launch() |