import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load your fine-tuned GPT-2 model from Hugging Face MODEL_NAME = "hackergeek98/therapist01" # Replace with your model name tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) # Initialize conversation history conversation_history = "" # Function to generate responses using GPT-2 def generate_response(user_input): global conversation_history # Update conversation history with user input conversation_history += f"User: {user_input}\n" # Tokenize the conversation history inputs = tokenizer(conversation_history, return_tensors="pt", truncation=True, max_length=1024) # Generate a response from the model outputs = model.generate(inputs['input_ids'], max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2) # Decode the model's output response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Update conversation history with the model's response conversation_history += f"Therapist: {response}\n" # Return the therapist's response return response # Create Gradio interface interface = gr.Interface( fn=generate_response, inputs=gr.Textbox(label="Enter your message", lines=2), outputs=gr.Textbox(label="Therapist Response", lines=2), title="Virtual Therapist", description="A fine-tuned GPT-2 model acting as a virtual therapist. Chat with the model and receive responses as if you are talking to a therapist." ) # Launch the app if __name__ == "__main__": interface.launch()