import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoModelForCausalLM, AutoTokenizer # Initialize the Zephyr-7B client zephyr_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Load your fine-tuned GPT-2 model from Hugging Face MODEL_NAME = "hackergeek98/therapist01" # Replace with your model name gpt2_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) gpt2_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) # Initialize conversation history for GPT-2 conversation_history = "" # Function to generate responses using Zephyr-7B def respond_with_zephyr( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in zephyr_client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Function to generate responses using GPT-2 def respond_with_gpt2(user_input): global conversation_history # Update conversation history with user input conversation_history += f"User: {user_input}\n" # Tokenize the conversation history inputs = gpt2_tokenizer(conversation_history, return_tensors="pt", truncation=True, max_length=1024) # Generate a response from the model outputs = gpt2_model.generate(inputs['input_ids'], max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2) # Decode the model's output response = gpt2_tokenizer.decode(outputs[0], skip_special_tokens=True) # Update conversation history with the model's response conversation_history += f"Therapist: {response}\n" # Return the therapist's response return response # Function to handle the model selection and response generation def respond(message, history, model_choice, system_message, max_tokens, temperature, top_p): if model_choice == "Zephyr-7B": return respond_with_zephyr(message, history, system_message, max_tokens, temperature, top_p) elif model_choice == "GPT-2 Therapist": return respond_with_gpt2(message) else: return "Invalid model selection." # Create Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown(choices=["Zephyr-7B", "GPT-2 Therapist"], label="Model", value="Zephyr-7B"), gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], title="Multi-Model Chat Interface", description="Choose between Zephyr-7B and a fine-tuned GPT-2 model to chat with." ) # Launch the app if __name__ == "__main__": demo.launch()