import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load your fine-tuned GPT-2 model from Hugging Face MODEL_NAME = "hackergeek98/therapist01" # Replace w tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) # Initialize conversation history conversation_history = "" # Function to generate responses def generate_response(user_input): global conversation_history # Update conversation history with user input conversation_history += f"User: {user_input}\n" # Tokenize the conversation history inputs = tokenizer(conversation_history, return_tensors="pt", truncation=True, max_length=1024) # Generate a response from the model outputs = model.generate(inputs['input_ids'], max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2) # Decode the model's output response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Update conversation history with the model's response conversation_history += f"Therapist: {response}\n" # Return the therapist's response return response # Create Gradio interface interface = gr.Interface(fn=generate_response, inputs=gr.Textbox(label="Enter your message", lines=2), outputs=gr.Textbox(label="Therapist Response", lines=2), title="Virtual Therapist", description="A fine-tuned GPT-2 model acting as a virtual therapist. Chat with the model and receive responses as if you are talking to a therapist.") # Launch the app interface.launch() if __name__ == "__main__": demo.launch()