hackergeek98 commited on
Commit
af31357
·
verified ·
1 Parent(s): eb1159d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -65
app.py CHANGED
@@ -1,66 +1,29 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
  from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
- # Initialize the Zephyr-7B client
6
- zephyr_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
7
-
8
  # Load your fine-tuned GPT-2 model from Hugging Face
9
  MODEL_NAME = "hackergeek98/therapist01" # Replace with your model name
10
- gpt2_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
11
- gpt2_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
12
 
13
- # Initialize conversation history for GPT-2
14
  conversation_history = ""
15
 
16
- # Function to generate responses using Zephyr-7B
17
- def respond_with_zephyr(
18
- message,
19
- history: list[tuple[str, str]],
20
- system_message,
21
- max_tokens,
22
- temperature,
23
- top_p,
24
- ):
25
- messages = [{"role": "system", "content": system_message}]
26
-
27
- for val in history:
28
- if val[0]:
29
- messages.append({"role": "user", "content": val[0]})
30
- if val[1]:
31
- messages.append({"role": "assistant", "content": val[1]})
32
-
33
- messages.append({"role": "user", "content": message})
34
-
35
- response = ""
36
-
37
- for message in zephyr_client.chat_completion(
38
- messages,
39
- max_tokens=max_tokens,
40
- stream=True,
41
- temperature=temperature,
42
- top_p=top_p,
43
- ):
44
- token = message.choices[0].delta.content
45
-
46
- response += token
47
- yield response
48
-
49
  # Function to generate responses using GPT-2
50
- def respond_with_gpt2(user_input):
51
  global conversation_history
52
 
53
  # Update conversation history with user input
54
  conversation_history += f"User: {user_input}\n"
55
 
56
  # Tokenize the conversation history
57
- inputs = gpt2_tokenizer(conversation_history, return_tensors="pt", truncation=True, max_length=1024)
58
 
59
  # Generate a response from the model
60
- outputs = gpt2_model.generate(inputs['input_ids'], max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2)
61
 
62
  # Decode the model's output
63
- response = gpt2_tokenizer.decode(outputs[0], skip_special_tokens=True)
64
 
65
  # Update conversation history with the model's response
66
  conversation_history += f"Therapist: {response}\n"
@@ -68,29 +31,15 @@ def respond_with_gpt2(user_input):
68
  # Return the therapist's response
69
  return response
70
 
71
- # Function to handle the model selection and response generation
72
- def respond(message, history, model_choice, system_message, max_tokens, temperature, top_p):
73
- if model_choice == "Zephyr-7B":
74
- return respond_with_zephyr(message, history, system_message, max_tokens, temperature, top_p)
75
- elif model_choice == "GPT-2 Therapist":
76
- return respond_with_gpt2(message)
77
- else:
78
- return "Invalid model selection."
79
-
80
  # Create Gradio interface
81
- demo = gr.ChatInterface(
82
- respond,
83
- additional_inputs=[
84
- gr.Dropdown(choices=["Zephyr-7B", "GPT-2 Therapist"], label="Model", value="Zephyr-7B"),
85
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
86
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
87
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
88
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
89
- ],
90
- title="Multi-Model Chat Interface",
91
- description="Choose between Zephyr-7B and a fine-tuned GPT-2 model to chat with."
92
  )
93
 
94
  # Launch the app
95
  if __name__ == "__main__":
96
- demo.launch()
 
1
  import gradio as gr
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
 
 
 
4
  # Load your fine-tuned GPT-2 model from Hugging Face
5
  MODEL_NAME = "hackergeek98/therapist01" # Replace with your model name
6
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
7
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
8
 
9
+ # Initialize conversation history
10
  conversation_history = ""
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  # Function to generate responses using GPT-2
13
+ def generate_response(user_input):
14
  global conversation_history
15
 
16
  # Update conversation history with user input
17
  conversation_history += f"User: {user_input}\n"
18
 
19
  # Tokenize the conversation history
20
+ inputs = tokenizer(conversation_history, return_tensors="pt", truncation=True, max_length=1024)
21
 
22
  # Generate a response from the model
23
+ outputs = model.generate(inputs['input_ids'], max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2)
24
 
25
  # Decode the model's output
26
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
27
 
28
  # Update conversation history with the model's response
29
  conversation_history += f"Therapist: {response}\n"
 
31
  # Return the therapist's response
32
  return response
33
 
 
 
 
 
 
 
 
 
 
34
  # Create Gradio interface
35
+ interface = gr.Interface(
36
+ fn=generate_response,
37
+ inputs=gr.Textbox(label="Enter your message", lines=2),
38
+ outputs=gr.Textbox(label="Therapist Response", lines=2),
39
+ title="Virtual Therapist",
40
+ description="A fine-tuned GPT-2 model acting as a virtual therapist. Chat with the model and receive responses as if you are talking to a therapist."
 
 
 
 
 
41
  )
42
 
43
  # Launch the app
44
  if __name__ == "__main__":
45
+ interface.launch()