import gradio as gr from huggingface_hub import InferenceClient import os from huggingface_hub import login # Fetch token from environment (automatically loaded from secrets) hf_token = os.getenv("gemma3") login(hf_token) # Initialize the client with your model client = InferenceClient("hackergeek98/gemma-finetuned") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Preparing the messages list messages = [{"role": "system", "content": system_message}] # Adding conversation history for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Adding the new user message messages.append({"role": "user", "content": message}) # Prepare the prompt for generation prompt = " ".join([msg["content"] for msg in messages]) # Call the Inference API for text generation (or chat completion if supported) response = client.completion( model="hackergeek98/gemma-finetuned", # Specify the model prompt=prompt, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) # The response will contain the generated text return response["choices"][0]["text"] # Gradio interface setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) # Run the app if __name__ == "__main__": demo.launch()