import gradio as gr from huggingface_hub import InferenceClient import os from huggingface_hub import login # Fetch token from environment (automatically loaded from secrets) hf_token = os.getenv("gemma3") login(hf_token) client = InferenceClient("hackergeek98/gemma-finetuned") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): prompt = f"{system_message}\n" # Add conversation history if needed for val in history: if val[0]: prompt += f"User: {val[0]}\n" if val[1]: prompt += f"Assistant: {val[1]}\n" prompt += f"User: {message}\nAssistant:" # Request generation from Hugging Face Inference API response = client.text_generation( model="hackergeek98/gemma-finetuned", inputs=prompt, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) return response['generated_text'] # Gradio interface setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) # Run the app if __name__ == "__main__": demo.launch()