import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load your fine-tuned GPT-2 model from Hugging Face MODEL_NAME = "hackergeek98/finetuned-gpt2" # Replace with your model tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) # Function to generate responses def generate_response(user_input): # Tokenize the input inputs = tokenizer(user_input, return_tensors="pt") # Generate a response outputs = model.generate(inputs['input_ids'], max_length=1000, num_return_sequences=1, no_repeat_ngram_size=2) # Decode the output and return the result response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create Gradio interface interface = gr.Interface(fn=generate_response, inputs=gr.Textbox(label="Enter your message"), outputs=gr.Textbox(label="Therapist Response"), title="Virtual Therapist", description="A fine-tuned GPT-2 model acting as a virtual therapist.") # Launch the app interface.launch()