Xtherapist / app.py
hackergeek98's picture
Create app.py
97cce4f verified
raw
history blame
1.15 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load your fine-tuned GPT-2 model from Hugging Face
MODEL_NAME = "hackergeek98/finetuned-gpt2" # Replace with your model
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
# Function to generate responses
def generate_response(user_input):
# Tokenize the input
inputs = tokenizer(user_input, return_tensors="pt")
# Generate a response
outputs = model.generate(inputs['input_ids'], max_length=1000, num_return_sequences=1, no_repeat_ngram_size=2)
# Decode the output and return the result
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Create Gradio interface
interface = gr.Interface(fn=generate_response,
inputs=gr.Textbox(label="Enter your message"),
outputs=gr.Textbox(label="Therapist Response"),
title="Virtual Therapist",
description="A fine-tuned GPT-2 model acting as a virtual therapist.")
# Launch the app
interface.launch()