Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load your fine-tuned GPT-2 model from Hugging Face | |
MODEL_NAME = "hackergeek98/finetuned-gpt2" # Replace with your model | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
# Function to generate responses | |
def generate_response(user_input): | |
# Tokenize the input | |
inputs = tokenizer(user_input, return_tensors="pt") | |
# Generate a response | |
outputs = model.generate(inputs['input_ids'], max_length=1000, num_return_sequences=1, no_repeat_ngram_size=2) | |
# Decode the output and return the result | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create Gradio interface | |
interface = gr.Interface(fn=generate_response, | |
inputs=gr.Textbox(label="Enter your message"), | |
outputs=gr.Textbox(label="Therapist Response"), | |
title="Virtual Therapist", | |
description="A fine-tuned GPT-2 model acting as a virtual therapist.") | |
# Launch the app | |
interface.launch() | |