import torch import gradio as gr import multiprocessing import os import time from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer from peft import get_peft_model, LoraConfig, TaskType from datasets import load_dataset device = "cpu" training_process = None log_file = "training_status.log" def log_status(message): with open(log_file, "w") as f: f.write(message) def read_status(): if os.path.exists(log_file): with open(log_file, "r") as f: return f.read() return "⏳ در انتظار شروع ترینینگ..." def train_model(dataset_url, model_url, epochs): try: log_status("🚀 در حال بارگیری مدل...") tokenizer = AutoTokenizer.from_pretrained(model_url, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_url, trust_remote_code=True, torch_dtype=torch.float32, device_map="cpu" ) lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, r=8, lora_alpha=32, lora_dropout=0.1, target_modules=["q_proj", "v_proj"] ) model = get_peft_model(model, lora_config) model.to(device) dataset = load_dataset(dataset_url) def tokenize_function(examples): return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=256) tokenized_datasets = dataset.map(tokenize_function, batched=True) train_dataset = tokenized_datasets["train"] training_args = TrainingArguments( output_dir="./deepseek_lora_cpu", evaluation_strategy="epoch", learning_rate=5e-4, per_device_train_batch_size=1, per_device_eval_batch_size=1, num_train_epochs=int(epochs), save_strategy="epoch", save_total_limit=2, logging_dir="./logs", logging_steps=10, fp16=False, gradient_checkpointing=True, optim="adamw_torch", report_to="none" ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset ) log_status("🚀 ترینینگ شروع شد...") for epoch in range(int(epochs)): log_status(f"🔄 در حال اجرا: Epoch {epoch+1}/{epochs}...") trainer.train(resume_from_checkpoint=True) trainer.save_model(f"./deepseek_lora_finetuned_epoch_{epoch+1}") log_status("✅ ترینینگ کامل شد!") except Exception as e: log_status(f"❌ خطا: {str(e)}") def start_training(dataset_url, model_url, epochs): global training_process if training_process is None or not training_process.is_alive(): training_process = multiprocessing.Process(target=train_model, args=(dataset_url, model_url, epochs)) training_process.start() return "🚀 ترینینگ شروع شد!" else: return "⚠ ترینینگ در حال اجرا است!" def update_status(): return read_status() with gr.Blocks() as app: gr.Markdown("# 🚀 AutoTrain DeepSeek R1 (CPU) - نمایش وضعیت لحظه‌ای") dataset_url = gr.Textbox(label="Dataset URL (Hugging Face)", placeholder="مثال: samsum") model_url = gr.Textbox(label="Model URL (Hugging Face)", placeholder="مثال: deepseek-ai/deepseek-r1") epochs = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="تعداد Epochs") train_button = gr.Button("شروع ترینینگ") output_text = gr.Textbox(label="وضعیت ترینینگ") train_button.click(start_training, inputs=[dataset_url, model_url, epochs], outputs=output_text) # ✅ نمایش وضعیت لحظه‌ای ترینینگ status_box = gr.Textbox(label="مرحله فعلی ترینینگ", interactive=False) refresh_button = gr.Button("🔄 به‌روزرسانی وضعیت") refresh_button.click(update_status, inputs=[], outputs=status_box) app.queue() app.launch(server_name="0.0.0.0", server_port=7860, share=True)