import torch import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer from peft import get_peft_model, LoraConfig, TaskType from datasets import load_dataset from bitsandbytes import BitsAndBytesConfig # ✅ Check if a GPU is available, otherwise use CPU device = "cuda" if torch.cuda.is_available() else "cpu" # ✅ Function to start training def train_model(dataset_url, model_url, epochs): try: # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(model_url) # ✅ Load model with 4-bit quantization for CPU efficiency bnb_config = BitsAndBytesConfig( load_in_4bit=True if device == "cuda" else False, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True ) model = AutoModelForCausalLM.from_pretrained( model_url, quantization_config=bnb_config if device == "cuda" else None, device_map=device ) # ✅ Apply LoRA for efficient training lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, r=8, lora_alpha=32, lora_dropout=0.1, target_modules=["q_proj", "v_proj"] ) model = get_peft_model(model, lora_config) model.to(device) # ✅ Load dataset dataset = load_dataset(dataset_url) # ✅ Tokenization function def tokenize_function(examples): return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=256) tokenized_datasets = dataset.map(tokenize_function, batched=True) train_dataset = tokenized_datasets["train"] # ✅ Training Arguments training_args = TrainingArguments( output_dir="./deepseek_lora_cpu", evaluation_strategy="epoch", learning_rate=5e-4, per_device_train_batch_size=1, per_device_eval_batch_size=1, num_train_epochs=int(epochs), save_strategy="epoch", save_total_limit=2, logging_dir="./logs", logging_steps=10, fp16=False, gradient_checkpointing=True, optim="adamw_torch", report_to="none" ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset ) # ✅ Start Training trainer.train() # ✅ Save the Fine-Tuned Model model.save_pretrained("./deepseek_lora_finetuned") tokenizer.save_pretrained("./deepseek_lora_finetuned") return "✅ Training Completed! Model saved successfully." except Exception as e: return f"❌ Error: {str(e)}" # ✅ Gradio UI with gr.Blocks() as app: gr.Markdown("# 🚀 AutoTrain DeepSeek R1 (CPU)") dataset_url = gr.Textbox(label="Dataset URL (Hugging Face)", placeholder="e.g. samsum") model_url = gr.Textbox(label="Model URL (Hugging Face)", placeholder="e.g. deepseek-ai/deepseek-r1") epochs = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="Number of Training Epochs") train_button = gr.Button("Start Training") output_text = gr.Textbox(label="Training Output") train_button.click(train_model, inputs=[dataset_url, model_url, epochs], outputs=output_text) # ✅ Launch the app app.launch(server_name="0.0.0.0", server_port=7860)