import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load your fine-tuned model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"hackergeek/gemma-finetuned",
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("hackergeek/gemma-finetuned")
tokenizer.pad_token = tokenizer.eos_token
def format_prompt(message, history):
"""Format the prompt with conversation history"""
system_prompt = "You are a knowledgeable space expert assistant. Answer questions about astronomy, space exploration, and related topics in a clear and engaging manner."
prompt = f"{system_prompt}\n"
for user_msg, bot_msg in history:
prompt += f"{user_msg}\n{bot_msg}\n"
prompt += f"{message}\n"
return prompt
def respond(message, history):
# Format the prompt with conversation history
full_prompt = format_prompt(message, history)
# Tokenize input
inputs = tokenizer(full_prompt, return_tensors="pt", add_special_tokens=False).to(model.device)
# Generate response
outputs = model.generate(
**inputs,
max_new_tokens=1024,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True
)
# Decode and extract only the new response
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return response
# Custom CSS for space theme
space_css = """
.gradio-container {
background: linear-gradient(45deg, #000000, #1a1a2e);
color: white;
}
.chatbot {
background-color: rgba(0, 0, 0, 0.7) !important;
border: 1px solid #4a4a4a !important;
}
"""
# Create the interface
with gr.Blocks(css=space_css, theme=gr.themes.Default(primary_hue="blue", secondary_hue="purple")) as demo:
gr.Markdown("# 🚀 Space Explorer Chatbot 🌌")
gr.Markdown("Ask me anything about space! Planets, stars, galaxies, or space exploration!")
chatbot = gr.ChatInterface(
respond,
examples=[
"Explain black holes in simple terms",
"What's the latest news about Mars exploration?",
"How do stars form?",
"Tell me about the James Webb Space Telescope"
],
retry_btn=None,
undo_btn=None,
clear_btn="Clear History",
)
chatbot.chatbot.height = 600
if __name__ == "__main__":
demo.launch(share=True)