File size: 2,557 Bytes
f1ff7a7
dc27180
 
f1ff7a7
dc27180
 
 
 
 
 
 
 
f1ff7a7
dc27180
 
 
 
 
 
 
 
 
 
f1ff7a7
dc27180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1ff7a7
dc27180
 
 
 
 
 
 
 
 
 
f1ff7a7
 
dc27180
 
 
 
6a97a99
dc27180
6a97a99
 
dc27180
 
 
 
6a97a99
 
 
dc27180
6a97a99
dc27180
 
f1ff7a7
 
dc27180
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load your fine-tuned model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    "hackergeek/gemma-finetuned",
    torch_dtype=torch.float16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("hackergeek/gemma-finetuned")
tokenizer.pad_token = tokenizer.eos_token

def format_prompt(message, history):
    """Format the prompt with conversation history"""
    system_prompt = "You are a knowledgeable space expert assistant. Answer questions about astronomy, space exploration, and related topics in a clear and engaging manner."
    prompt = f"<system>{system_prompt}</system>\n"
    
    for user_msg, bot_msg in history:
        prompt += f"<user>{user_msg}</user>\n<assistant>{bot_msg}</assistant>\n"
    
    prompt += f"<user>{message}</user>\n<assistant>"
    return prompt

def respond(message, history):
    # Format the prompt with conversation history
    full_prompt = format_prompt(message, history)
    
    # Tokenize input
    inputs = tokenizer(full_prompt, return_tensors="pt", add_special_tokens=False).to(model.device)
    
    # Generate response
    outputs = model.generate(
        **inputs,
        max_new_tokens=1024,
        temperature=0.7,
        top_p=0.9,
        repetition_penalty=1.1,
        do_sample=True
    )
    
    # Decode and extract only the new response
    response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
    
    return response

# Custom CSS for space theme
space_css = """
.gradio-container {
    background: linear-gradient(45deg, #000000, #1a1a2e);
    color: white;
}
.chatbot {
    background-color: rgba(0, 0, 0, 0.7) !important;
    border: 1px solid #4a4a4a !important;
}
"""

# Create the interface
with gr.Blocks(css=space_css, theme=gr.themes.Default(primary_hue="blue", secondary_hue="purple")) as demo:
    gr.Markdown("# πŸš€ Space Explorer Chatbot 🌌")
    gr.Markdown("Ask me anything about space! Planets, stars, galaxies, or space exploration!")
    
    chatbot = gr.ChatInterface(
        respond,
        examples=[
            "Explain black holes in simple terms",
            "What's the latest news about Mars exploration?",
            "How do stars form?",
            "Tell me about the James Webb Space Telescope"
        ],
        retry_btn=None,
        undo_btn=None,
        clear_btn="Clear History",
    )
    
    chatbot.chatbot.height = 600

if __name__ == "__main__":
    demo.launch(share=True)