Spaces:
Running
Running
File size: 2,628 Bytes
55f664e 6dfb9dc 55f664e 6dfb9dc bae8052 6dfb9dc bae8052 6dfb9dc bae8052 6dfb9dc bae8052 6dfb9dc 136e0e8 6dfb9dc bae8052 6dfb9dc bae8052 6dfb9dc bae8052 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
import pandas as pd
import json
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
# Load selected features from JSON file
with open("selected_features.json", "r") as file:
selected_features = json.load(file)
def preprocess_data(data):
# Identify numerical and categorical columns
numerical_cols = [col for col in data.columns if data[col].dtype in ['int64', 'float64']]
categorical_cols = [col for col in data.columns if col not in numerical_cols]
# Preprocessing pipeline
preprocessor = ColumnTransformer(
transformers=[
('num', StandardScaler(), numerical_cols),
('cat', OneHotEncoder(sparse_output=False, drop='first'), categorical_cols)
]
)
# Apply preprocessing
processed_data = preprocessor.fit_transform(data)
feature_names = numerical_cols + list(preprocessor.named_transformers_['cat'].get_feature_names_out(categorical_cols))
return pd.DataFrame(processed_data, columns=feature_names)
def process_manual_input(**kwargs):
# Create a DataFrame for a single patient from keyword arguments
input_data = pd.DataFrame([kwargs])
# Preprocess the data
processed_data = preprocess_data(input_data)
return processed_data.to_csv(index=False)
# GUI inputs for each feature
gui_inputs = []
for feature in selected_features:
if feature.startswith("Had"): # Binary categorical features
gui_inputs.append(gr.Radio(label=feature, choices=["Yes", "No"], value="No"))
elif feature in ["BMI", "WeightInKilograms", "HeightInMeters"]: # Numerical features
gui_inputs.append(gr.Slider(label=feature, minimum=0, maximum=300, step=0.1, value=25))
elif feature == "PhysicalHealthDays": # Numerical feature with a smaller range
gui_inputs.append(gr.Slider(label=feature, minimum=0, maximum=30, step=1, value=5))
elif feature == "SleepHours": # Hours of sleep
gui_inputs.append(gr.Slider(label=feature, minimum=0, maximum=24, step=0.5, value=8))
else: # Default for any remaining numerical features
gui_inputs.append(gr.Slider(label=feature, minimum=0, maximum=100, step=1, value=50))
# Create the Gradio app interface
interface = gr.Interface(
fn=process_manual_input,
inputs=gui_inputs,
outputs=gr.Textbox(label="Processed Data (CSV Format)"),
title="Single Patient Data Preprocessor",
description="Input data for a single patient using sliders and radio buttons. The data will be preprocessed and displayed as CSV."
)
# Launch the app
interface.launch() |