hackerbyhobby
commited on
updated app and other files
Browse files- app.py +83 -71
- other_scam_keywords.txt +9 -0
- requirements.txt +2 -1
- smishing_keywords.txt +12 -0
app.py
CHANGED
|
@@ -4,99 +4,104 @@ from PIL import Image
|
|
| 4 |
from transformers import pipeline
|
| 5 |
import re
|
| 6 |
|
| 7 |
-
# 1. Load
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
| 13 |
model_name = "joeddav/xlm-roberta-large-xnli"
|
| 14 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 15 |
|
|
|
|
| 16 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 17 |
|
| 18 |
-
def
|
| 19 |
"""
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
Returns an updated dict of probabilities that sum to 1.
|
| 25 |
"""
|
| 26 |
lower_text = text.lower()
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
#
|
| 34 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 35 |
-
url_boost = 0.0
|
| 36 |
if found_urls:
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
if total > 0:
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
else:
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
legit_final = 1.0
|
| 67 |
|
| 68 |
return {
|
| 69 |
-
"SMiShing":
|
| 70 |
-
"Other Scam":
|
| 71 |
-
"Legitimate":
|
| 72 |
}
|
| 73 |
|
| 74 |
def smishing_detector(text, image):
|
| 75 |
"""
|
| 76 |
-
1.
|
| 77 |
-
2.
|
| 78 |
-
3.
|
| 79 |
-
4.
|
| 80 |
-
5. Return final label, confidence, etc.
|
| 81 |
"""
|
| 82 |
-
|
| 83 |
-
combined_text = text if text else ""
|
| 84 |
if image is not None:
|
| 85 |
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
| 86 |
combined_text += " " + ocr_text
|
| 87 |
-
|
| 88 |
-
# Clean text
|
| 89 |
combined_text = combined_text.strip()
|
|
|
|
| 90 |
if not combined_text:
|
| 91 |
return {
|
| 92 |
"text_used_for_classification": "(none)",
|
| 93 |
"label": "No text provided",
|
| 94 |
"confidence": 0.0,
|
| 95 |
-
"
|
|
|
|
| 96 |
"urls_found": []
|
| 97 |
}
|
| 98 |
|
| 99 |
-
#
|
| 100 |
result = classifier(
|
| 101 |
sequences=combined_text,
|
| 102 |
candidate_labels=CANDIDATE_LABELS,
|
|
@@ -104,25 +109,29 @@ def smishing_detector(text, image):
|
|
| 104 |
)
|
| 105 |
original_probs = dict(zip(result["labels"], result["scores"]))
|
| 106 |
|
| 107 |
-
#
|
| 108 |
-
boosted_probs =
|
| 109 |
-
|
| 110 |
-
# Step 4: Pick final label after boost
|
| 111 |
final_label = max(boosted_probs, key=boosted_probs.get)
|
| 112 |
final_confidence = round(boosted_probs[final_label], 3)
|
| 113 |
|
| 114 |
-
#
|
| 115 |
lower_text = combined_text.lower()
|
| 116 |
-
|
|
|
|
| 117 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 118 |
|
| 119 |
return {
|
| 120 |
"text_used_for_classification": combined_text,
|
| 121 |
-
"original_probabilities": {
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
"label": final_label,
|
| 124 |
"confidence": final_confidence,
|
| 125 |
-
"
|
|
|
|
| 126 |
"urls_found": found_urls,
|
| 127 |
}
|
| 128 |
|
|
@@ -140,11 +149,14 @@ demo = gr.Interface(
|
|
| 140 |
)
|
| 141 |
],
|
| 142 |
outputs="json",
|
| 143 |
-
title="SMiShing & Scam Detector (
|
| 144 |
description="""
|
| 145 |
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
| 146 |
-
(joeddav/xlm-roberta-large-xnli).
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
| 148 |
Supports English & Spanish text (OCR included).
|
| 149 |
""",
|
| 150 |
allow_flagging="never"
|
|
|
|
| 4 |
from transformers import pipeline
|
| 5 |
import re
|
| 6 |
|
| 7 |
+
# 1. Load keywords from separate files
|
| 8 |
+
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
|
| 9 |
+
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
|
|
|
| 10 |
|
| 11 |
+
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
|
| 12 |
+
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
| 13 |
+
|
| 14 |
+
# 2. Load the zero-shot classification pipeline
|
| 15 |
model_name = "joeddav/xlm-roberta-large-xnli"
|
| 16 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 17 |
|
| 18 |
+
# We will classify among these three labels
|
| 19 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 20 |
|
| 21 |
+
def boost_probabilities(probabilities: dict, text: str) -> dict:
|
| 22 |
"""
|
| 23 |
+
Increases SMiShing probability if 'smishing_keywords' or URLs are found.
|
| 24 |
+
Increases Other Scam probability if 'other_scam_keywords' are found.
|
| 25 |
+
Reduces Legitimate by the total amount of these boosts.
|
| 26 |
+
Then clamps negative probabilities to 0 and re-normalizes.
|
|
|
|
| 27 |
"""
|
| 28 |
lower_text = text.lower()
|
| 29 |
|
| 30 |
+
# Count smishing keywords
|
| 31 |
+
smishing_keyword_count = sum(1 for kw in SMISHING_KEYWORDS if kw in lower_text)
|
| 32 |
+
# Count other scam keywords
|
| 33 |
+
other_scam_keyword_count = sum(1 for kw in OTHER_SCAM_KEYWORDS if kw in lower_text)
|
| 34 |
+
|
| 35 |
+
# Base boosts
|
| 36 |
+
smishing_boost = 0.10 * smishing_keyword_count
|
| 37 |
+
other_scam_boost = 0.10 * other_scam_keyword_count
|
| 38 |
|
| 39 |
+
# Check URLs => +0.20 only to Smishing
|
| 40 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
|
|
|
| 41 |
if found_urls:
|
| 42 |
+
smishing_boost += 0.20
|
| 43 |
+
|
| 44 |
+
# Extract original probabilities
|
| 45 |
+
p_smishing = probabilities["SMiShing"]
|
| 46 |
+
p_other_scam = probabilities["Other Scam"]
|
| 47 |
+
p_legit = probabilities["Legitimate"]
|
| 48 |
+
|
| 49 |
+
# Apply boosts
|
| 50 |
+
p_smishing += smishing_boost
|
| 51 |
+
p_other_scam += other_scam_boost
|
| 52 |
+
|
| 53 |
+
# Subtract total boost from Legitimate
|
| 54 |
+
total_boost = smishing_boost + other_scam_boost
|
| 55 |
+
p_legit -= total_boost
|
| 56 |
+
|
| 57 |
+
# Clamp negative probabilities
|
| 58 |
+
if p_smishing < 0:
|
| 59 |
+
p_smishing = 0.0
|
| 60 |
+
if p_other_scam < 0:
|
| 61 |
+
p_other_scam = 0.0
|
| 62 |
+
if p_legit < 0:
|
| 63 |
+
p_legit = 0.0
|
| 64 |
+
|
| 65 |
+
# Re-normalize so sum=1
|
| 66 |
+
total = p_smishing + p_other_scam + p_legit
|
| 67 |
if total > 0:
|
| 68 |
+
p_smishing /= total
|
| 69 |
+
p_other_scam /= total
|
| 70 |
+
p_legit /= total
|
| 71 |
else:
|
| 72 |
+
# fallback if everything is zero
|
| 73 |
+
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
|
|
|
|
| 74 |
|
| 75 |
return {
|
| 76 |
+
"SMiShing": p_smishing,
|
| 77 |
+
"Other Scam": p_other_scam,
|
| 78 |
+
"Legitimate": p_legit
|
| 79 |
}
|
| 80 |
|
| 81 |
def smishing_detector(text, image):
|
| 82 |
"""
|
| 83 |
+
1. OCR if image provided.
|
| 84 |
+
2. Zero-shot classify => base probabilities.
|
| 85 |
+
3. Boost probabilities based on keywords + URL logic.
|
| 86 |
+
4. Return final classification + confidence.
|
|
|
|
| 87 |
"""
|
| 88 |
+
combined_text = text or ""
|
|
|
|
| 89 |
if image is not None:
|
| 90 |
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
| 91 |
combined_text += " " + ocr_text
|
|
|
|
|
|
|
| 92 |
combined_text = combined_text.strip()
|
| 93 |
+
|
| 94 |
if not combined_text:
|
| 95 |
return {
|
| 96 |
"text_used_for_classification": "(none)",
|
| 97 |
"label": "No text provided",
|
| 98 |
"confidence": 0.0,
|
| 99 |
+
"smishing_keywords_found": [],
|
| 100 |
+
"other_scam_keywords_found": [],
|
| 101 |
"urls_found": []
|
| 102 |
}
|
| 103 |
|
| 104 |
+
# Perform zero-shot classification
|
| 105 |
result = classifier(
|
| 106 |
sequences=combined_text,
|
| 107 |
candidate_labels=CANDIDATE_LABELS,
|
|
|
|
| 109 |
)
|
| 110 |
original_probs = dict(zip(result["labels"], result["scores"]))
|
| 111 |
|
| 112 |
+
# Apply boosts
|
| 113 |
+
boosted_probs = boost_probabilities(original_probs, combined_text)
|
|
|
|
|
|
|
| 114 |
final_label = max(boosted_probs, key=boosted_probs.get)
|
| 115 |
final_confidence = round(boosted_probs[final_label], 3)
|
| 116 |
|
| 117 |
+
# For display: which keywords + URLs
|
| 118 |
lower_text = combined_text.lower()
|
| 119 |
+
smishing_found = [kw for kw in SMISHING_KEYWORDS if kw in lower_text]
|
| 120 |
+
other_scam_found = [kw for kw in OTHER_SCAM_KEYWORDS if kw in lower_text]
|
| 121 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
| 122 |
|
| 123 |
return {
|
| 124 |
"text_used_for_classification": combined_text,
|
| 125 |
+
"original_probabilities": {
|
| 126 |
+
k: round(v, 3) for k, v in original_probs.items()
|
| 127 |
+
},
|
| 128 |
+
"boosted_probabilities": {
|
| 129 |
+
k: round(v, 3) for k, v in boosted_probs.items()
|
| 130 |
+
},
|
| 131 |
"label": final_label,
|
| 132 |
"confidence": final_confidence,
|
| 133 |
+
"smishing_keywords_found": smishing_found,
|
| 134 |
+
"other_scam_keywords_found": other_scam_found,
|
| 135 |
"urls_found": found_urls,
|
| 136 |
}
|
| 137 |
|
|
|
|
| 149 |
)
|
| 150 |
],
|
| 151 |
outputs="json",
|
| 152 |
+
title="SMiShing & Scam Detector (Separate Keywords + URL → SMiShing)",
|
| 153 |
description="""
|
| 154 |
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
| 155 |
+
(joeddav/xlm-roberta-large-xnli).
|
| 156 |
+
- 'smishing_keywords.txt' boosts SMiShing specifically.
|
| 157 |
+
- 'other_scam_keywords.txt' boosts Other Scam specifically.
|
| 158 |
+
- Any URL found further boosts ONLY Smishing.
|
| 159 |
+
- The total boost is subtracted from Legitimate.
|
| 160 |
Supports English & Spanish text (OCR included).
|
| 161 |
""",
|
| 162 |
allow_flagging="never"
|
other_scam_keywords.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
love
|
| 2 |
+
urgent
|
| 3 |
+
help
|
| 4 |
+
lottery
|
| 5 |
+
winnings
|
| 6 |
+
prize
|
| 7 |
+
congratulations
|
| 8 |
+
gift
|
| 9 |
+
claim
|
requirements.txt
CHANGED
|
@@ -4,4 +4,5 @@ torch==2.0.1
|
|
| 4 |
sentencepiece==0.1.99
|
| 5 |
pytesseract==0.3.10
|
| 6 |
Pillow==9.5.0
|
| 7 |
-
|
|
|
|
|
|
| 4 |
sentencepiece==0.1.99
|
| 5 |
pytesseract==0.3.10
|
| 6 |
Pillow==9.5.0
|
| 7 |
+
tesseract-ocr
|
| 8 |
+
numpy==1.23.5
|
smishing_keywords.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
urgent
|
| 2 |
+
atm
|
| 3 |
+
password
|
| 4 |
+
bank
|
| 5 |
+
account
|
| 6 |
+
verify
|
| 7 |
+
http
|
| 8 |
+
.com
|
| 9 |
+
https
|
| 10 |
+
URL
|
| 11 |
+
copy
|
| 12 |
+
paste
|