hackerbyhobby
commited on
updated requirements
Browse files
app.py
CHANGED
|
@@ -23,9 +23,7 @@ CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
|
| 23 |
|
| 24 |
def get_keywords_by_language(text: str):
|
| 25 |
"""
|
| 26 |
-
|
| 27 |
-
2. If Spanish ('es'), translate each English-based keyword to Spanish using `deep-translator`.
|
| 28 |
-
3. If English (or other languages), use the original English lists.
|
| 29 |
"""
|
| 30 |
snippet = text[:200] # Use a snippet for detection
|
| 31 |
try:
|
|
@@ -34,7 +32,6 @@ def get_keywords_by_language(text: str):
|
|
| 34 |
detected_lang = "en" # Default to English if detection fails
|
| 35 |
|
| 36 |
if detected_lang == "es":
|
| 37 |
-
# Translate all SMiShing and Other Scam keywords to Spanish
|
| 38 |
smishing_in_spanish = [
|
| 39 |
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
|
| 40 |
]
|
|
@@ -43,7 +40,6 @@ def get_keywords_by_language(text: str):
|
|
| 43 |
]
|
| 44 |
return smishing_in_spanish, other_scam_in_spanish, "es"
|
| 45 |
else:
|
| 46 |
-
# Default to English keywords
|
| 47 |
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
| 48 |
|
| 49 |
def boost_probabilities(probabilities: dict, text: str):
|
|
@@ -63,20 +59,17 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 63 |
if found_urls:
|
| 64 |
smishing_boost += 0.35
|
| 65 |
|
| 66 |
-
p_smishing = probabilities
|
| 67 |
-
p_other_scam = probabilities
|
| 68 |
-
p_legit = probabilities
|
| 69 |
|
| 70 |
p_smishing += smishing_boost
|
| 71 |
p_other_scam += other_scam_boost
|
| 72 |
p_legit -= (smishing_boost + other_scam_boost)
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
p_other_scam = 0.0
|
| 78 |
-
if p_legit < 0:
|
| 79 |
-
p_legit = 0.0
|
| 80 |
|
| 81 |
total = p_smishing + p_other_scam + p_legit
|
| 82 |
if total > 0:
|
|
@@ -94,6 +87,9 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 94 |
}
|
| 95 |
|
| 96 |
def smishing_detector(text, image):
|
|
|
|
|
|
|
|
|
|
| 97 |
combined_text = text or ""
|
| 98 |
if image is not None:
|
| 99 |
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
|
@@ -114,11 +110,13 @@ def smishing_detector(text, image):
|
|
| 114 |
candidate_labels=CANDIDATE_LABELS,
|
| 115 |
hypothesis_template="This message is {}."
|
| 116 |
)
|
| 117 |
-
original_probs =
|
| 118 |
boosted = boost_probabilities(original_probs, combined_text)
|
|
|
|
|
|
|
|
|
|
| 119 |
final_label = max(boosted, key=boosted.get)
|
| 120 |
final_confidence = round(boosted[final_label], 3)
|
| 121 |
-
detected_lang = boosted.pop("detected_lang", "en")
|
| 122 |
|
| 123 |
lower_text = combined_text.lower()
|
| 124 |
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
|
|
|
| 23 |
|
| 24 |
def get_keywords_by_language(text: str):
|
| 25 |
"""
|
| 26 |
+
Detect language using `langdetect` and translate keywords if needed.
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
snippet = text[:200] # Use a snippet for detection
|
| 29 |
try:
|
|
|
|
| 32 |
detected_lang = "en" # Default to English if detection fails
|
| 33 |
|
| 34 |
if detected_lang == "es":
|
|
|
|
| 35 |
smishing_in_spanish = [
|
| 36 |
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
|
| 37 |
]
|
|
|
|
| 40 |
]
|
| 41 |
return smishing_in_spanish, other_scam_in_spanish, "es"
|
| 42 |
else:
|
|
|
|
| 43 |
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
| 44 |
|
| 45 |
def boost_probabilities(probabilities: dict, text: str):
|
|
|
|
| 59 |
if found_urls:
|
| 60 |
smishing_boost += 0.35
|
| 61 |
|
| 62 |
+
p_smishing = probabilities.get("SMiShing", 0.0)
|
| 63 |
+
p_other_scam = probabilities.get("Other Scam", 0.0)
|
| 64 |
+
p_legit = probabilities.get("Legitimate", 1.0)
|
| 65 |
|
| 66 |
p_smishing += smishing_boost
|
| 67 |
p_other_scam += other_scam_boost
|
| 68 |
p_legit -= (smishing_boost + other_scam_boost)
|
| 69 |
|
| 70 |
+
p_smishing = max(p_smishing, 0.0)
|
| 71 |
+
p_other_scam = max(p_other_scam, 0.0)
|
| 72 |
+
p_legit = max(p_legit, 0.0)
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
total = p_smishing + p_other_scam + p_legit
|
| 75 |
if total > 0:
|
|
|
|
| 87 |
}
|
| 88 |
|
| 89 |
def smishing_detector(text, image):
|
| 90 |
+
"""
|
| 91 |
+
Main detection function combining text and OCR.
|
| 92 |
+
"""
|
| 93 |
combined_text = text or ""
|
| 94 |
if image is not None:
|
| 95 |
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
|
|
|
| 110 |
candidate_labels=CANDIDATE_LABELS,
|
| 111 |
hypothesis_template="This message is {}."
|
| 112 |
)
|
| 113 |
+
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
|
| 114 |
boosted = boost_probabilities(original_probs, combined_text)
|
| 115 |
+
|
| 116 |
+
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
|
| 117 |
+
detected_lang = boosted.pop("detected_lang", "en")
|
| 118 |
final_label = max(boosted, key=boosted.get)
|
| 119 |
final_confidence = round(boosted[final_label], 3)
|
|
|
|
| 120 |
|
| 121 |
lower_text = combined_text.lower()
|
| 122 |
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|