hackerbyhobby
commited on
rollback due to error
Browse files
app.py
CHANGED
|
@@ -5,22 +5,6 @@ from transformers import pipeline
|
|
| 5 |
import re
|
| 6 |
from langdetect import detect
|
| 7 |
from deep_translator import GoogleTranslator
|
| 8 |
-
import shap
|
| 9 |
-
import requests
|
| 10 |
-
import json
|
| 11 |
-
import os
|
| 12 |
-
import numpy as np
|
| 13 |
-
from shap.maskers import Text
|
| 14 |
-
|
| 15 |
-
# Patch SHAP to replace np.bool with np.bool_ dynamically
|
| 16 |
-
if hasattr(shap.maskers._text.Text, "invariants"):
|
| 17 |
-
original_invariants = shap.maskers._text.Text.invariants
|
| 18 |
-
|
| 19 |
-
def patched_invariants(self, *args):
|
| 20 |
-
# Use np.bool_ instead of the deprecated np.bool
|
| 21 |
-
return np.zeros(len(self._tokenized_s), dtype=np.bool_)
|
| 22 |
-
|
| 23 |
-
shap.maskers._text.Text.invariants = patched_invariants
|
| 24 |
|
| 25 |
# Translator instance
|
| 26 |
translator = GoogleTranslator(source="auto", target="es")
|
|
@@ -37,58 +21,15 @@ model_name = "joeddav/xlm-roberta-large-xnli"
|
|
| 37 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 38 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 39 |
|
| 40 |
-
# 3. SHAP Explainer Setup
|
| 41 |
-
explainer = shap.Explainer(classifier, masker=Text(tokenizer=classifier.tokenizer))
|
| 42 |
-
|
| 43 |
-
# Retrieve the Google Safe Browsing API key from the environment
|
| 44 |
-
SAFE_BROWSING_API_KEY = os.getenv("SAFE_BROWSING_API_KEY")
|
| 45 |
-
|
| 46 |
-
if not SAFE_BROWSING_API_KEY:
|
| 47 |
-
raise ValueError("Google Safe Browsing API key not found. Please set it as an environment variable in your Hugging Face Space.")
|
| 48 |
-
|
| 49 |
-
SAFE_BROWSING_URL = "https://safebrowsing.googleapis.com/v4/threatMatches:find"
|
| 50 |
-
|
| 51 |
-
def check_url_with_google_safebrowsing(url):
|
| 52 |
-
"""
|
| 53 |
-
Check a URL against Google's Safe Browsing API.
|
| 54 |
-
"""
|
| 55 |
-
payload = {
|
| 56 |
-
"client": {
|
| 57 |
-
"clientId": "your-client-id",
|
| 58 |
-
"clientVersion": "1.0"
|
| 59 |
-
},
|
| 60 |
-
"threatInfo": {
|
| 61 |
-
"threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"],
|
| 62 |
-
"platformTypes": ["ANY_PLATFORM"],
|
| 63 |
-
"threatEntryTypes": ["URL"],
|
| 64 |
-
"threatEntries": [
|
| 65 |
-
{"url": url}
|
| 66 |
-
]
|
| 67 |
-
}
|
| 68 |
-
}
|
| 69 |
-
try:
|
| 70 |
-
response = requests.post(
|
| 71 |
-
SAFE_BROWSING_URL,
|
| 72 |
-
params={"key": SAFE_BROWSING_API_KEY},
|
| 73 |
-
json=payload
|
| 74 |
-
)
|
| 75 |
-
response_data = response.json()
|
| 76 |
-
if "matches" in response_data:
|
| 77 |
-
return True # URL is flagged as malicious
|
| 78 |
-
return False # URL is safe
|
| 79 |
-
except Exception as e:
|
| 80 |
-
print(f"Error checking URL with Safe Browsing API: {e}")
|
| 81 |
-
return False
|
| 82 |
-
|
| 83 |
def get_keywords_by_language(text: str):
|
| 84 |
"""
|
| 85 |
Detect language using `langdetect` and translate keywords if needed.
|
| 86 |
"""
|
| 87 |
-
snippet = text[:200]
|
| 88 |
try:
|
| 89 |
detected_lang = detect(snippet)
|
| 90 |
except Exception:
|
| 91 |
-
detected_lang = "en"
|
| 92 |
|
| 93 |
if detected_lang == "es":
|
| 94 |
smishing_in_spanish = [
|
|
@@ -126,10 +67,12 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 126 |
p_other_scam += other_scam_boost
|
| 127 |
p_legit -= (smishing_boost + other_scam_boost)
|
| 128 |
|
|
|
|
| 129 |
p_smishing = max(p_smishing, 0.0)
|
| 130 |
p_other_scam = max(p_other_scam, 0.0)
|
| 131 |
p_legit = max(p_legit, 0.0)
|
| 132 |
|
|
|
|
| 133 |
total = p_smishing + p_other_scam + p_legit
|
| 134 |
if total > 0:
|
| 135 |
p_smishing /= total
|
|
@@ -142,104 +85,19 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
| 142 |
"SMiShing": p_smishing,
|
| 143 |
"Other Scam": p_other_scam,
|
| 144 |
"Legitimate": p_legit,
|
| 145 |
-
"detected_lang": detected_lang
|
| 146 |
}
|
| 147 |
|
| 148 |
-
def
|
| 149 |
-
"""
|
| 150 |
-
Generate SHAP explanations for the classification.
|
| 151 |
"""
|
| 152 |
-
|
| 153 |
-
raise ValueError("Cannot generate SHAP explanations for empty text.")
|
| 154 |
-
|
| 155 |
-
shap_values = explainer([text])
|
| 156 |
-
shap.force_plot(
|
| 157 |
-
explainer.expected_value[0], shap_values[0].values[0], shap_values[0].data
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
def generate_user_friendly_message(
|
| 161 |
-
final_label: str,
|
| 162 |
-
confidence: float,
|
| 163 |
-
found_smishing: list,
|
| 164 |
-
found_other_scam: list,
|
| 165 |
-
found_urls: list,
|
| 166 |
-
threat_analysis: dict
|
| 167 |
-
) -> str:
|
| 168 |
"""
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
"We found indications typical of phishing via SMS, such as "
|
| 176 |
-
)
|
| 177 |
-
reasons = []
|
| 178 |
-
if found_smishing:
|
| 179 |
-
reasons.append(f"the use of suspicious keywords: {', '.join(found_smishing)}")
|
| 180 |
-
if found_urls:
|
| 181 |
-
flagged_urls = [u for u in found_urls if threat_analysis.get(u)]
|
| 182 |
-
safe_urls = [u for u in found_urls if not threat_analysis.get(u)]
|
| 183 |
-
if flagged_urls:
|
| 184 |
-
reasons.append(f"at least one URL flagged as unsafe: {', '.join(flagged_urls)}")
|
| 185 |
-
if safe_urls:
|
| 186 |
-
reasons.append(f"other URLs may be suspicious: {', '.join(safe_urls)}")
|
| 187 |
-
|
| 188 |
-
if not reasons:
|
| 189 |
-
reasons.append("certain context or structure commonly used in SMiShing")
|
| 190 |
-
|
| 191 |
-
msg += " and ".join(reasons) + "."
|
| 192 |
-
return msg
|
| 193 |
-
|
| 194 |
-
elif final_label == "Other Scam":
|
| 195 |
-
msg = (
|
| 196 |
-
f"This message is classified as 'Other Scam' (confidence {confidence}). "
|
| 197 |
-
"It contains elements typically associated with scams. "
|
| 198 |
-
)
|
| 199 |
-
reasons = []
|
| 200 |
-
if found_other_scam:
|
| 201 |
-
reasons.append(f"keywords often linked to fraudulent activity: {', '.join(found_other_scam)}")
|
| 202 |
-
if found_urls:
|
| 203 |
-
flagged_urls = [u for u in found_urls if threat_analysis.get(u)]
|
| 204 |
-
safe_urls = [u for u in found_urls if not threat_analysis.get(u)]
|
| 205 |
-
if flagged_urls:
|
| 206 |
-
reasons.append(f"URLs flagged as unsafe: {', '.join(flagged_urls)}")
|
| 207 |
-
if safe_urls:
|
| 208 |
-
reasons.append(f"additional suspicious URLs: {', '.join(safe_urls)}")
|
| 209 |
-
|
| 210 |
-
if not reasons:
|
| 211 |
-
reasons.append("general content or structure known to be used in scams")
|
| 212 |
-
|
| 213 |
-
msg += " and ".join(reasons) + "."
|
| 214 |
-
return msg
|
| 215 |
-
|
| 216 |
-
else: # Legitimate
|
| 217 |
-
msg = (
|
| 218 |
-
f"This message is classified as 'Legitimate' (confidence {confidence}). "
|
| 219 |
-
"We did not detect typical phishing or scam indicators. "
|
| 220 |
-
)
|
| 221 |
-
if found_urls:
|
| 222 |
-
# If there are URLs, mention if they're considered safe
|
| 223 |
-
flagged_urls = [u for u in found_urls if threat_analysis.get(u)]
|
| 224 |
-
if flagged_urls:
|
| 225 |
-
msg += f"However, note that at least one URL appears unsafe: {', '.join(flagged_urls)}."
|
| 226 |
-
else:
|
| 227 |
-
msg += "Although it contains URLs, none appear to be malicious."
|
| 228 |
-
else:
|
| 229 |
-
msg += "No suspicious keywords or URLs were detected."
|
| 230 |
-
|
| 231 |
-
return msg
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
def smishing_detector(text, image):
|
| 235 |
-
"""
|
| 236 |
-
Main detection function combining text and OCR.
|
| 237 |
-
"""
|
| 238 |
-
combined_text = text or ""
|
| 239 |
-
if image is not None:
|
| 240 |
-
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
| 241 |
-
combined_text += " " + ocr_text
|
| 242 |
-
combined_text = combined_text.strip()
|
| 243 |
|
| 244 |
if not combined_text:
|
| 245 |
return {
|
|
@@ -247,9 +105,7 @@ def smishing_detector(text, image):
|
|
| 247 |
"label": "No text provided",
|
| 248 |
"confidence": 0.0,
|
| 249 |
"keywords_found": [],
|
| 250 |
-
"urls_found": []
|
| 251 |
-
"threat_analysis": "No URLs to analyze",
|
| 252 |
-
"user_friendly_message": "No classification could be made since no text was provided.",
|
| 253 |
}
|
| 254 |
|
| 255 |
result = classifier(
|
|
@@ -258,12 +114,18 @@ def smishing_detector(text, image):
|
|
| 258 |
hypothesis_template="This message is {}."
|
| 259 |
)
|
| 260 |
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
|
|
|
|
| 261 |
boosted = boost_probabilities(original_probs, combined_text)
|
| 262 |
|
| 263 |
-
#
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
for k, v in boosted.items():
|
| 266 |
boosted[k] = float(v)
|
|
|
|
| 267 |
|
| 268 |
final_label = max(boosted, key=boosted.get)
|
| 269 |
final_confidence = round(boosted[final_label], 3)
|
|
@@ -275,24 +137,6 @@ def smishing_detector(text, image):
|
|
| 275 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
| 276 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
| 277 |
|
| 278 |
-
# Analyze URLs using Google's Safe Browsing API
|
| 279 |
-
threat_analysis = {
|
| 280 |
-
url: check_url_with_google_safebrowsing(url) for url in found_urls
|
| 281 |
-
}
|
| 282 |
-
|
| 283 |
-
# Generate SHAP Explanation (optional for user insights)
|
| 284 |
-
explain_classification(combined_text)
|
| 285 |
-
|
| 286 |
-
# Build user-friendly message
|
| 287 |
-
user_friendly_msg = generate_user_friendly_message(
|
| 288 |
-
final_label,
|
| 289 |
-
final_confidence,
|
| 290 |
-
found_smishing,
|
| 291 |
-
found_other_scam,
|
| 292 |
-
found_urls,
|
| 293 |
-
threat_analysis
|
| 294 |
-
)
|
| 295 |
-
|
| 296 |
return {
|
| 297 |
"detected_language": detected_lang,
|
| 298 |
"text_used_for_classification": combined_text,
|
|
@@ -303,33 +147,64 @@ def smishing_detector(text, image):
|
|
| 303 |
"smishing_keywords_found": found_smishing,
|
| 304 |
"other_scam_keywords_found": found_other_scam,
|
| 305 |
"urls_found": found_urls,
|
| 306 |
-
"threat_analysis": threat_analysis,
|
| 307 |
-
# The new user-friendly explanation
|
| 308 |
-
"user_friendly_message": user_friendly_msg,
|
| 309 |
}
|
| 310 |
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
)
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
if __name__ == "__main__":
|
| 335 |
demo.launch()
|
|
|
|
| 5 |
import re
|
| 6 |
from langdetect import detect
|
| 7 |
from deep_translator import GoogleTranslator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Translator instance
|
| 10 |
translator = GoogleTranslator(source="auto", target="es")
|
|
|
|
| 21 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
| 22 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def get_keywords_by_language(text: str):
|
| 25 |
"""
|
| 26 |
Detect language using `langdetect` and translate keywords if needed.
|
| 27 |
"""
|
| 28 |
+
snippet = text[:200]
|
| 29 |
try:
|
| 30 |
detected_lang = detect(snippet)
|
| 31 |
except Exception:
|
| 32 |
+
detected_lang = "en"
|
| 33 |
|
| 34 |
if detected_lang == "es":
|
| 35 |
smishing_in_spanish = [
|
|
|
|
| 67 |
p_other_scam += other_scam_boost
|
| 68 |
p_legit -= (smishing_boost + other_scam_boost)
|
| 69 |
|
| 70 |
+
# Clamp
|
| 71 |
p_smishing = max(p_smishing, 0.0)
|
| 72 |
p_other_scam = max(p_other_scam, 0.0)
|
| 73 |
p_legit = max(p_legit, 0.0)
|
| 74 |
|
| 75 |
+
# Re-normalize
|
| 76 |
total = p_smishing + p_other_scam + p_legit
|
| 77 |
if total > 0:
|
| 78 |
p_smishing /= total
|
|
|
|
| 85 |
"SMiShing": p_smishing,
|
| 86 |
"Other Scam": p_other_scam,
|
| 87 |
"Legitimate": p_legit,
|
| 88 |
+
"detected_lang": detected_lang
|
| 89 |
}
|
| 90 |
|
| 91 |
+
def smishing_detector(input_type, text, image):
|
|
|
|
|
|
|
| 92 |
"""
|
| 93 |
+
Main detection function combining text (if 'Text') and OCR (if 'Screenshot').
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
"""
|
| 95 |
+
if input_type == "Text":
|
| 96 |
+
combined_text = text.strip() if text else ""
|
| 97 |
+
else:
|
| 98 |
+
combined_text = ""
|
| 99 |
+
if image is not None:
|
| 100 |
+
combined_text = pytesseract.image_to_string(image, lang="spa+eng").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
if not combined_text:
|
| 103 |
return {
|
|
|
|
| 105 |
"label": "No text provided",
|
| 106 |
"confidence": 0.0,
|
| 107 |
"keywords_found": [],
|
| 108 |
+
"urls_found": []
|
|
|
|
|
|
|
| 109 |
}
|
| 110 |
|
| 111 |
result = classifier(
|
|
|
|
| 114 |
hypothesis_template="This message is {}."
|
| 115 |
)
|
| 116 |
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
|
| 117 |
+
|
| 118 |
boosted = boost_probabilities(original_probs, combined_text)
|
| 119 |
|
| 120 |
+
# Patched snippet begins
|
| 121 |
+
# 1. Extract language first, preserving it
|
| 122 |
+
detected_lang = boosted.get("detected_lang", "en")
|
| 123 |
+
# 2. Remove it so only numeric keys remain
|
| 124 |
+
boosted.pop("detected_lang", None)
|
| 125 |
+
# 3. Convert numeric values to float
|
| 126 |
for k, v in boosted.items():
|
| 127 |
boosted[k] = float(v)
|
| 128 |
+
# Patched snippet ends
|
| 129 |
|
| 130 |
final_label = max(boosted, key=boosted.get)
|
| 131 |
final_confidence = round(boosted[final_label], 3)
|
|
|
|
| 137 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
| 138 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
return {
|
| 141 |
"detected_language": detected_lang,
|
| 142 |
"text_used_for_classification": combined_text,
|
|
|
|
| 147 |
"smishing_keywords_found": found_smishing,
|
| 148 |
"other_scam_keywords_found": found_other_scam,
|
| 149 |
"urls_found": found_urls,
|
|
|
|
|
|
|
|
|
|
| 150 |
}
|
| 151 |
|
| 152 |
+
#
|
| 153 |
+
# Gradio interface with dynamic visibility
|
| 154 |
+
#
|
| 155 |
+
def toggle_inputs(choice):
|
| 156 |
+
"""
|
| 157 |
+
Return updates for (text_input, image_input) based on the radio selection.
|
| 158 |
+
"""
|
| 159 |
+
if choice == "Text":
|
| 160 |
+
# Show text input, hide image
|
| 161 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 162 |
+
else:
|
| 163 |
+
# choice == "Screenshot"
|
| 164 |
+
# Hide text input, show image
|
| 165 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 166 |
+
|
| 167 |
+
with gr.Blocks() as demo:
|
| 168 |
+
gr.Markdown("## SMiShing & Scam Detector (Choose Text or Screenshot)")
|
| 169 |
+
|
| 170 |
+
with gr.Row():
|
| 171 |
+
input_type = gr.Radio(
|
| 172 |
+
choices=["Text", "Screenshot"],
|
| 173 |
+
value="Text",
|
| 174 |
+
label="Choose Input Type"
|
| 175 |
)
|
| 176 |
+
|
| 177 |
+
text_input = gr.Textbox(
|
| 178 |
+
lines=3,
|
| 179 |
+
label="Paste Suspicious SMS Text",
|
| 180 |
+
placeholder="Type or paste the message here...",
|
| 181 |
+
visible=True # default
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
image_input = gr.Image(
|
| 185 |
+
type="pil",
|
| 186 |
+
label="Upload Screenshot",
|
| 187 |
+
visible=False # hidden by default
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# Whenever input_type changes, toggle which input is visible
|
| 191 |
+
input_type.change(
|
| 192 |
+
fn=toggle_inputs,
|
| 193 |
+
inputs=input_type,
|
| 194 |
+
outputs=[text_input, image_input],
|
| 195 |
+
queue=False
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# Button to run classification
|
| 199 |
+
analyze_btn = gr.Button("Classify")
|
| 200 |
+
output_json = gr.JSON(label="Result")
|
| 201 |
+
|
| 202 |
+
# On button click, call the smishing_detector
|
| 203 |
+
analyze_btn.click(
|
| 204 |
+
fn=smishing_detector,
|
| 205 |
+
inputs=[input_type, text_input, image_input],
|
| 206 |
+
outputs=output_json
|
| 207 |
+
)
|
| 208 |
|
| 209 |
if __name__ == "__main__":
|
| 210 |
demo.launch()
|