import torch import tops def denormalize_img(image, mean=0.5, std=0.5): image = image * std + mean image = torch.clamp(image.float(), 0, 1) image = (image * 255) image = torch.round(image) return image / 255 @torch.no_grad() def im2numpy(images, to_uint8=False, denormalize=False): if denormalize: images = denormalize_img(images) if images.dtype != torch.uint8: images = images.clamp(0, 1) return tops.im2numpy(images, to_uint8=to_uint8) @torch.no_grad() def im2torch(im, cuda=False, normalize=True, to_float=True): im = tops.im2torch(im, cuda=cuda, to_float=to_float) if normalize: assert im.min() >= 0.0 and im.max() <= 1.0 if normalize: im = im * 2 - 1 return im @torch.no_grad() def binary_dilation(im: torch.Tensor, kernel: torch.Tensor): assert len(im.shape) == 4 assert len(kernel.shape) == 2 kernel = kernel.unsqueeze(0).unsqueeze(0) padding = kernel.shape[-1]//2 assert kernel.shape[-1] % 2 != 0 if isinstance(im, torch.cuda.FloatTensor): im, kernel = im.half(), kernel.half() else: im, kernel = im.float(), kernel.float() im = torch.nn.functional.conv2d( im, kernel, groups=im.shape[1], padding=padding) im = im > 0.5 return im @torch.no_grad() def binary_erosion(im: torch.Tensor, kernel: torch.Tensor): assert len(im.shape) == 4 assert len(kernel.shape) == 2 kernel = kernel.unsqueeze(0).unsqueeze(0) padding = kernel.shape[-1]//2 assert kernel.shape[-1] % 2 != 0 if isinstance(im, torch.cuda.FloatTensor): im, kernel = im.half(), kernel.half() else: im, kernel = im.float(), kernel.float() ksum = kernel.sum() padding = (padding, padding, padding, padding) im = torch.nn.functional.pad(im, padding, mode="reflect") im = torch.nn.functional.conv2d( im, kernel, groups=im.shape[1]) return im.round() == ksum def set_requires_grad(value: torch.nn.Module, requires_grad: bool): if isinstance(value, (list, tuple)): for param in value: param.requires_grad = requires_grad return for p in value.parameters(): p.requires_grad = requires_grad def forward_D_fake(batch, fake_img, discriminator, **kwargs): fake_batch = {k: v for k, v in batch.items() if k != "img"} fake_batch["img"] = fake_img return discriminator(**fake_batch, **kwargs) def remove_pad(x: torch.Tensor, bbox_XYXY, imshape): """ Remove padding that is shown as negative """ H, W = imshape x0, y0, x1, y1 = bbox_XYXY padding = [ max(0, -x0), max(0, -y0), max(x1 - W, 0), max(y1 - H, 0) ] x0, y0 = padding[:2] x1 = x.shape[2] - padding[2] y1 = x.shape[1] - padding[3] return x[:, y0:y1, x0:x1] def crop_box(x: torch.Tensor, bbox_XYXY) -> torch.Tensor: """ Crops x by bbox_XYXY. """ x0, y0, x1, y1 = bbox_XYXY x0 = max(x0, 0) y0 = max(y0, 0) x1 = min(x1, x.shape[-1]) y1 = min(y1, x.shape[-2]) return x[..., y0:y1, x0:x1]