deep_privacy2 / dp2 /detection /box_utils.py
haakohu's picture
fix
44539fc
raw
history blame
3.86 kB
import numpy as np
def expand_bbox_to_ratio(bbox, imshape, target_aspect_ratio):
x0, y0, x1, y1 = [int(_) for _ in bbox]
h, w = y1 - y0, x1 - x0
cur_ratio = h / w
if cur_ratio == target_aspect_ratio:
return [x0, y0, x1, y1]
if cur_ratio < target_aspect_ratio:
target_height = int(w*target_aspect_ratio)
y0, y1 = expand_axis(y0, y1, target_height, imshape[0])
else:
target_width = int(h/target_aspect_ratio)
x0, x1 = expand_axis(x0, x1, target_width, imshape[1])
return x0, y0, x1, y1
def expand_axis(start, end, target_width, limit):
# Can return a bbox outside of limit
cur_width = end - start
start = start - (target_width-cur_width)//2
end = end + (target_width-cur_width)//2
if end - start != target_width:
end += 1
assert end - start == target_width
if start < 0 and end > limit:
return start, end
if start < 0 and end < limit:
to_shift = min(0 - start, limit - end)
start += to_shift
end += to_shift
if end > limit and start > 0:
to_shift = min(end - limit, start)
end -= to_shift
start -= to_shift
assert end - start == target_width
return start, end
def expand_box(bbox, imshape, mask, percentage_background: float):
assert isinstance(bbox[0], int)
assert 0 < percentage_background < 1
# Percentage in S
mask_pixels = mask.long().sum().cpu()
total_pixels = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
percentage_mask = mask_pixels / total_pixels
if (1 - percentage_mask) > percentage_background:
return bbox
target_pixels = mask_pixels / (1 - percentage_background)
x0, y0, x1, y1 = bbox
H = y1 - y0
W = x1 - x0
p = np.sqrt(target_pixels/(H*W))
target_width = int(np.ceil(p * W))
target_height = int(np.ceil(p * H))
x0, x1 = expand_axis(x0, x1, target_width, imshape[1])
y0, y1 = expand_axis(y0, y1, target_height, imshape[0])
return [x0, y0, x1, y1]
def expand_axises_by_percentage(bbox_XYXY, imshape, percentage):
x0, y0, x1, y1 = bbox_XYXY
H = y1 - y0
W = x1 - x0
expansion = int(((H*W)**0.5) * percentage)
new_width = W + expansion
new_height = H + expansion
x0, x1 = expand_axis(x0, x1, min(new_width, imshape[1]), imshape[1])
y0, y1 = expand_axis(y0, y1, min(new_height, imshape[0]), imshape[0])
return [x0, y0, x1, y1]
def get_expanded_bbox(
bbox_XYXY,
imshape,
mask,
percentage_background: float,
axis_minimum_expansion: float,
target_aspect_ratio: float):
bbox_XYXY = bbox_XYXY.long().cpu().numpy().tolist()
# Expand each axis of the bounding box by a minimum percentage
bbox_XYXY = expand_axises_by_percentage(bbox_XYXY, imshape, axis_minimum_expansion)
# Find the minimum bbox with the aspect ratio. Can be outside of imshape
bbox_XYXY = expand_bbox_to_ratio(bbox_XYXY, imshape, target_aspect_ratio)
# Expands square box such that X% of the bbox is background
bbox_XYXY = expand_box(bbox_XYXY, imshape, mask, percentage_background)
assert isinstance(bbox_XYXY[0], (int, np.int64))
return bbox_XYXY
def include_box(bbox, minimum_area, aspect_ratio_range, min_bbox_ratio_inside, imshape):
def area_inside_ratio(bbox, imshape):
area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
area_inside = (min(bbox[2], imshape[1]) - max(0, bbox[0])) * (min(imshape[0], bbox[3]) - max(0, bbox[1]))
return area_inside / area
ratio = (bbox[3] - bbox[1]) / (bbox[2] - bbox[0])
area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
if area_inside_ratio(bbox, imshape) < min_bbox_ratio_inside:
return False
if ratio <= aspect_ratio_range[0] or ratio >= aspect_ratio_range[1] or area < minimum_area:
return False
return True