deep_privacy2 / dp2 /generator /deep_privacy1.py
haakohu's picture
fix
44539fc
raw
history blame
22.6 kB
import torch
import torch.nn as nn
from easydict import EasyDict
from .base import BaseGenerator
import numpy as np
from typing import List
class LatentVariableConcat(nn.Module):
def __init__(self, conv2d_config):
super().__init__()
def forward(self, _inp):
x, mask, batch = _inp
z = batch["z"]
x = torch.cat((x, z), dim=1)
return (x, mask, batch)
def get_padding(kernel_size: int, dilation: int, stride: int):
out = (dilation * (kernel_size - 1) - 1) / 2 + 1
return int(np.floor(out))
class Conv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=None, dilation=1, groups=1,
bias=True, padding_mode='zeros',
demodulation=False, wsconv=False, gain=1,
*args, **kwargs):
if padding is None:
padding = get_padding(kernel_size, dilation, stride)
super().__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, bias, padding_mode)
self.demodulation = demodulation
self.wsconv = wsconv
if self.wsconv:
fan_in = np.prod(self.weight.shape[1:]) / self.groups
self.ws_scale = gain / np.sqrt(fan_in)
nn.init.normal_(self.weight)
if bias:
nn.init.constant_(self.bias, val=0)
assert not self.padding_mode == "circular",\
"conv2d_forward does not support circular padding. Look at original pytorch code"
def _get_weight(self):
weight = self.weight
if self.wsconv:
weight = self.ws_scale * weight
if self.demodulation:
demod = torch.rsqrt(weight.pow(2).sum([1, 2, 3]) + 1e-7)
weight = weight * demod.view(self.out_channels, 1, 1, 1)
return weight
def conv2d_forward(self, x, weight, bias=True):
bias_ = None
if bias:
bias_ = self.bias
return nn.functional.conv2d(x, weight, bias_, self.stride,
self.padding, self.dilation, self.groups)
def forward(self, _inp):
x, mask = _inp
weight = self._get_weight()
return self.conv2d_forward(x, weight), mask
def __repr__(self):
return ", ".join([
super().__repr__(),
f"Demodulation={self.demodulation}",
f"Weight Scale={self.wsconv}",
f"Bias={self.bias is not None}"
])
class LeakyReLU(nn.LeakyReLU):
def forward(self, _inp):
x, mask = _inp
return super().forward(x), mask
class AvgPool2d(nn.AvgPool2d):
def forward(self, _inp):
x, mask, *args = _inp
x = super().forward(x)
mask = super().forward(mask)
if len(args) > 0:
return (x, mask, *args)
return x, mask
def up(x):
if x.shape[0] == 1 and x.shape[2] == 1 and x.shape[3] == 1:
# Analytical normalization
return x
return nn.functional.interpolate(
x, scale_factor=2, mode="nearest")
class NearestUpsample(nn.Module):
def forward(self, _inp):
x, mask, *args = _inp
x = up(x)
mask = up(mask)
if len(args) > 0:
return (x, mask, *args)
return x, mask
class PixelwiseNormalization(nn.Module):
def forward(self, _inp):
x, mask = _inp
norm = torch.rsqrt((x**2).mean(dim=1, keepdim=True) + 1e-7)
return x * norm, mask
class Linear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features)
self.linear = nn.Linear(in_features, out_features)
fanIn = in_features
self.wtScale = 1 / np.sqrt(fanIn)
nn.init.normal_(self.weight)
nn.init.constant_(self.bias, val=0)
def _get_weight(self):
return self.weight * self.wtScale
def forward_linear(self, x, weight):
return nn.functional.linear(x, weight, self.bias)
def forward(self, x):
return self.forward_linear(x, self._get_weight())
class OneHotPoseConcat(nn.Module):
def forward(self, _inp):
x, mask, batch = _inp
landmarks = batch["landmarks_oh"]
res = x.shape[-1]
landmark = landmarks[res]
x = torch.cat((x, landmark), dim=1)
del batch["landmarks_oh"][res]
return x, mask, batch
def transition_features(x_old, x_new, transition_variable):
assert x_old.shape == x_new.shape,\
"Old shape: {}, New: {}".format(x_old.shape, x_new.shape)
return torch.lerp(x_old.float(), x_new.float(), transition_variable)
class TransitionBlock(nn.Module):
def forward(self, _inp):
x, mask, batch = _inp
x = transition_features(
batch["x_old"], x, batch["transition_value"])
mask = transition_features(
batch["mask_old"], mask, batch["transition_value"])
del batch["x_old"]
del batch["mask_old"]
return x, mask, batch
class UnetSkipConnection(nn.Module):
def __init__(self, conv2d_config: dict, in_channels: int,
out_channels: int, resolution: int,
residual: bool, enabled: bool):
super().__init__()
self.use_iconv = conv2d_config.conv.type == "iconv"
self._in_channels = in_channels
self._out_channels = out_channels
self._resolution = resolution
self._enabled = enabled
self._residual = residual
if self.use_iconv:
self.beta0 = torch.nn.Parameter(torch.tensor(1.))
self.beta1 = torch.nn.Parameter(torch.tensor(1.))
else:
if self._residual:
self.conv = build_base_conv(
conv2d_config, False, in_channels // 2,
out_channels, kernel_size=1, padding=0)
else:
self.conv = ConvAct(
conv2d_config, in_channels, out_channels,
kernel_size=1, padding=0)
def forward(self, _inp):
if not self._enabled:
return _inp
x, mask, batch = _inp
skip_x, skip_mask = batch["unet_features"][self._resolution]
assert x.shape == skip_x.shape, (x.shape, skip_x.shape)
del batch["unet_features"][self._resolution]
if self.use_iconv:
denom = skip_mask * self.beta0.relu() + mask * self.beta1.relu() + 1e-8
gamma = skip_mask * self.beta0.relu() / denom
x = skip_x * gamma + (1 - gamma) * x
mask = skip_mask * gamma + (1 - gamma) * mask
else:
if self._residual:
skip_x, skip_mask = self.conv((skip_x, skip_mask))
x = (x + skip_x) / np.sqrt(2)
if self._probabilistic:
mask = (mask + skip_mask) / np.sqrt(2)
else:
x = torch.cat((x, skip_x), dim=1)
x, mask = self.conv((x, mask))
return x, mask, batch
def __repr__(self):
return " ".join([
self.__class__.__name__,
f"In channels={self._in_channels}",
f"Out channels={self._out_channels}",
f"Residual: {self._residual}",
f"Enabled: {self._enabled}"
f"IConv: {self.use_iconv}"
])
def get_conv(ctype, post_act):
type2conv = {
"conv": Conv2d,
"gconv": GatedConv
}
# Do not apply for output layer
if not post_act and ctype in ["gconv", "iconv"]:
return type2conv["conv"]
assert ctype in type2conv
return type2conv[ctype]
def build_base_conv(
conv2d_config, post_act: bool, *args, **kwargs) -> nn.Conv2d:
for k, v in conv2d_config.conv.items():
assert k not in kwargs
kwargs[k] = v
# Demodulation should not be used for output layers.
demodulation = conv2d_config.normalization == "demodulation" and post_act
kwargs["demodulation"] = demodulation
conv = get_conv(conv2d_config.conv.type, post_act)
return conv(*args, **kwargs)
def build_post_activation(in_channels, conv2d_config) -> List[nn.Module]:
_layers = []
negative_slope = conv2d_config.leaky_relu_nslope
_layers.append(LeakyReLU(negative_slope, inplace=True))
if conv2d_config.normalization == "pixel_wise":
_layers.append(PixelwiseNormalization())
return _layers
def build_avgpool(conv2d_config, kernel_size) -> nn.AvgPool2d:
return AvgPool2d(kernel_size)
def build_convact(conv2d_config, *args, **kwargs):
conv = build_base_conv(conv2d_config, True, *args, **kwargs)
out_channels = conv.out_channels
post_act = build_post_activation(out_channels, conv2d_config)
return nn.Sequential(conv, *post_act)
class ConvAct(nn.Module):
def __init__(self, conv2d_config, *args, **kwargs):
super().__init__()
self._conv2d_config = conv2d_config
conv = build_base_conv(conv2d_config, True, *args, **kwargs)
self.in_channels = conv.in_channels
self.out_channels = conv.out_channels
_layers = [conv]
_layers.extend(build_post_activation(self.out_channels, conv2d_config))
self.layers = nn.Sequential(*_layers)
def forward(self, _inp):
return self.layers(_inp)
class GatedConv(Conv2d):
def __init__(self, in_channels, out_channels, *args, **kwargs):
out_channels *= 2
super().__init__(in_channels, out_channels, *args, **kwargs)
assert self.out_channels % 2 == 0
self.lrelu = nn.LeakyReLU(0.2, inplace=True)
self.sigmoid = nn.Sigmoid()
def conv2d_forward(self, x, weight, bias=True):
x_ = super().conv2d_forward(x, weight, bias)
x = x_[:, :self.out_channels // 2]
y = x_[:, self.out_channels // 2:]
x = self.lrelu(x)
y = y.sigmoid()
assert x.shape == y.shape, f"{x.shape}, {y.shape}"
return x * y
class BasicBlock(nn.Module):
def __init__(
self, conv2d_config, resolution: int, in_channels: int,
out_channels: List[int], residual: bool):
super().__init__()
assert len(out_channels) == 2
self._resolution = resolution
self._residual = residual
self.out_channels = out_channels
_layers = []
_in_channels = in_channels
for out_ch in out_channels:
conv = build_base_conv(
conv2d_config, True, _in_channels, out_ch, kernel_size=3,
resolution=resolution)
_layers.append(conv)
_layers.extend(build_post_activation(_in_channels, conv2d_config))
_in_channels = out_ch
self.layers = nn.Sequential(*_layers)
if self._residual:
self.residual_conv = build_base_conv(
conv2d_config, post_act=False, in_channels=in_channels,
out_channels=out_channels[-1],
kernel_size=1, padding=0)
self.const = 1 / np.sqrt(2)
def forward(self, _inp):
x, mask, batch = _inp
y = x
mask_ = mask
assert y.shape[-1] == self._resolution or y.shape[-1] == 1
y, mask = self.layers((x, mask))
if self._residual:
residual, mask_ = self.residual_conv((x, mask_))
y = (y + residual) * self.const
mask = (mask + mask_) * self.const
return y, mask, batch
def extra_repr(self):
return f"Residual={self._residual}, Resolution={self._resolution}"
class PoseNormalize(nn.Module):
@torch.no_grad()
def forward(self, x):
return x * 2 - 1
class ScalarPoseFCNN(nn.Module):
def __init__(self, pose_size, hidden_size,
output_shape):
super().__init__()
pose_size = pose_size
self._hidden_size = hidden_size
output_size = np.prod(output_shape)
self.output_shape = output_shape
self.pose_preprocessor = nn.Sequential(
PoseNormalize(),
Linear(pose_size, hidden_size),
nn.LeakyReLU(.2),
Linear(hidden_size, output_size),
nn.LeakyReLU(.2)
)
def forward(self, _inp):
x, mask, batch = _inp
pose_info = batch["landmarks"]
del batch["landmarks"]
pose = self.pose_preprocessor(pose_info)
pose = pose.view(-1, *self.output_shape)
if x.shape[0] == 1 and x.shape[2] == 1 and x.shape[3] == 1:
# Analytical normalization propagation
pose = pose.mean(dim=2, keepdim=True).mean(dim=3, keepdims=True)
x = torch.cat((x, pose), dim=1)
return x, mask, batch
def __repr__(self):
return " ".join([
self.__class__.__name__,
f"hidden_size={self._hidden_size}",
f"output shape={self.output_shape}"
])
class Attention(nn.Module):
def __init__(self, in_channels):
super(Attention, self).__init__()
# Channel multiplier
self.in_channels = in_channels
self.theta = Conv2d(
self.in_channels, self.in_channels // 8, kernel_size=1, padding=0,
bias=False)
self.phi = Conv2d(
self.in_channels, self.in_channels // 8, kernel_size=1, padding=0,
bias=False)
self.g = Conv2d(
self.in_channels, self.in_channels // 2, kernel_size=1, padding=0,
bias=False)
self.o = Conv2d(
self.in_channels // 2, self.in_channels, kernel_size=1, padding=0,
bias=False)
# Learnable gain parameter
self.gamma = nn.Parameter(torch.tensor(0.), requires_grad=True)
def forward(self, _inp):
x, mask, batch = _inp
# Apply convs
theta, _ = self.theta((x, None))
phi = nn.functional.max_pool2d(self.phi((x, None))[0], [2, 2])
g = nn.functional.max_pool2d(self.g((x, None))[0], [2, 2])
# Perform reshapes
theta = theta.view(-1, self.in_channels // 8, x.shape[2] * x.shape[3])
phi = phi.view(-1, self.in_channels // 8, x.shape[2] * x.shape[3] // 4)
g = g.view(-1, self.in_channels // 2, x.shape[2] * x.shape[3] // 4)
# Matmul and softmax to get attention maps
beta = nn.functional.softmax(torch.bmm(theta.transpose(1, 2), phi), -1)
# Attention map times g path
o = self.o((torch.bmm(g, beta.transpose(1, 2)).view(-1,
self.in_channels // 2, x.shape[2], x.shape[3]), None))[0]
return self.gamma * o + x, mask, batch
class MSGGenerator(BaseGenerator):
def __init__(self):
super().__init__(512)
max_imsize = 128
unet = dict(enabled=True, residual=False)
min_fmap_resolution = 4
model_size = 512
image_channels = 3
pose_size = 14
residual = False
conv_size = {
4: model_size,
8: model_size,
16: model_size,
32: model_size,
64: model_size//2,
128: model_size//4,
256: model_size//8,
512: model_size//16
}
self.removable_hooks = []
self.rgb_convolutions = nn.ModuleDict()
self.max_imsize = max_imsize
self._image_channels = image_channels
self._min_fmap_resolution = min_fmap_resolution
self._residual = residual
self._pose_size = pose_size
self.current_imsize = max_imsize
self._unet_cfg = unet
self.concat_input_mask = True
self.res2channels = {int(k): v for k, v in conv_size.items()}
self.conv2d_config = EasyDict(
pixel_normalization=True,
leaky_relu_nslope=.2,
normalization="pixel_wise",
conv=dict(
type="conv",
wsconv=True,
gain=1,
)
)
self._init_decoder()
self._init_encoder()
def _init_encoder(self):
self.encoder = nn.ModuleList()
imsize = self.max_imsize
self.from_rgb = build_convact(
self.conv2d_config,
in_channels=self._image_channels + self.concat_input_mask*2,
out_channels=self.res2channels[imsize],
kernel_size=1)
while imsize >= self._min_fmap_resolution:
current_size = self.res2channels[imsize]
next_size = self.res2channels[max(imsize//2, self._min_fmap_resolution)]
block = BasicBlock(
self.conv2d_config, imsize, current_size,
[current_size, next_size], self._residual)
self.encoder.add_module(f"basic_block{imsize}", block)
if imsize != self._min_fmap_resolution:
self.encoder.add_module(
f"downsample{imsize}", AvgPool2d(2))
imsize //= 2
def _init_decoder(self):
self.decoder = nn.ModuleList()
self.decoder.add_module(
"latent_concat", LatentVariableConcat(self.conv2d_config))
if self._pose_size > 0:
m = self._min_fmap_resolution
pose_shape = (16, m, m)
pose_fcnn = ScalarPoseFCNN(self._pose_size, 128, pose_shape)
self.decoder.add_module("pose_fcnn", pose_fcnn)
imsize = self._min_fmap_resolution
self.rgb_convolutions = nn.ModuleDict()
while imsize <= self.max_imsize:
current_size = self.res2channels[max(imsize//2, self._min_fmap_resolution)]
start_size = current_size
if imsize == self._min_fmap_resolution:
start_size += 32
if self._pose_size > 0:
start_size += 16
else:
self.decoder.add_module(f"upsample{imsize}", NearestUpsample())
skip = UnetSkipConnection(
self.conv2d_config, current_size*2, current_size, imsize,
**self._unet_cfg)
self.decoder.add_module(f"skip_connection{imsize}", skip)
next_size = self.res2channels[imsize]
block = BasicBlock(
self.conv2d_config, imsize, start_size, [start_size, next_size],
residual=self._residual)
self.decoder.add_module(f"basic_block{imsize}", block)
to_rgb = build_base_conv(
self.conv2d_config, False, in_channels=next_size,
out_channels=self._image_channels, kernel_size=1)
self.rgb_convolutions[str(imsize)] = to_rgb
imsize *= 2
self.norm_constant = len(self.rgb_convolutions)
def forward_decoder(self, x, mask, batch):
imsize_start = max(x.shape[-1] // 2, 1)
rgb = torch.zeros(
(x.shape[0], self._image_channels,
imsize_start, imsize_start),
dtype=x.dtype, device=x.device)
mask_size = 1
mask_out = torch.zeros(
(x.shape[0], mask_size,
imsize_start, imsize_start),
dtype=x.dtype, device=x.device)
imsize = self._min_fmap_resolution // 2
for module in self.decoder:
x, mask, batch = module((x, mask, batch))
if isinstance(module, BasicBlock):
imsize *= 2
rgb = up(rgb)
mask_out = up(mask_out)
conv = self.rgb_convolutions[str(imsize)]
rgb_, mask_ = conv((x, mask))
assert rgb_.shape == rgb.shape,\
f"rgb_ {rgb_.shape}, rgb: {rgb.shape}"
rgb = rgb + rgb_
return rgb / self.norm_constant, mask_out
def forward_encoder(self, x, mask, batch):
if self.concat_input_mask:
x = torch.cat((x, mask, 1 - mask), dim=1)
unet_features = {}
x, mask = self.from_rgb((x, mask))
for module in self.encoder:
x, mask, batch = module((x, mask, batch))
if isinstance(module, BasicBlock):
unet_features[module._resolution] = (x, mask)
return x, mask, unet_features
def forward(
self,
condition,
mask, keypoints=None, z=None,
**kwargs):
keypoints = keypoints.flatten(start_dim=1).clip(-1, 1)
if z is None:
z = self.get_z(condition)
z = z.view(-1, 32, 4, 4)
batch = dict(
landmarks=keypoints,
z=z)
orig_mask = mask
x, mask, unet_features = self.forward_encoder(condition, mask, batch)
batch = dict(
landmarks=keypoints,
z=z,
unet_features=unet_features)
x, mask = self.forward_decoder(x, mask, batch)
x = condition * orig_mask + (1 - orig_mask) * x
return dict(img=x)
def load_state_dict(self, state_dict, strict=True):
if "parameters" in state_dict:
state_dict = state_dict["parameters"]
old_checkpoint = any("basic_block0" in key for key in state_dict)
if not old_checkpoint:
return super().load_state_dict(state_dict, strict=strict)
mapping = {}
imsize = self._min_fmap_resolution
i = 0
while imsize <= self.max_imsize:
old_key = f"decoder.basic_block{i}."
new_key = f"decoder.basic_block{imsize}."
mapping[old_key] = new_key
if i >= 1:
old_key = old_key.replace("basic_block", "skip_connection")
new_key = new_key.replace("basic_block", "skip_connection")
mapping[old_key] = new_key
mapping[old_key] = new_key
old_key = f"encoder.basic_block{i}."
new_key = f"encoder.basic_block{imsize}."
mapping[old_key] = new_key
old_key = "from_rgb.conv.layers.0."
new_key = "from_rgb.0."
mapping[old_key] = new_key
i += 1
imsize *= 2
new_sd = {}
for key, value in state_dict.items():
old_key = key
if "from_rgb" in key:
new_sd[key.replace("encoder.", "").replace(".conv.layers", "")] = value
continue
for subkey, new_subkey in mapping.items():
if subkey in key:
old_key = key
key = key.replace(subkey, new_subkey)
break
if "decoder.to_rgb" in key:
continue
new_sd[key] = value
return super().load_state_dict(new_sd, strict=strict)
def update_w(self, *args, **kwargs):
return