File size: 16,577 Bytes
97a6728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import torch
import tops
import cv2
import torchvision.transforms.functional as F
from typing import Optional, List, Union, Tuple
from .cse import from_E_to_vertex
import numpy as np
from tops import download_file
from .torch_utils import (
    denormalize_img, binary_dilation, binary_erosion,
    remove_pad, crop_box)
from torchvision.utils import _generate_color_palette
from PIL import Image, ImageColor, ImageDraw


def get_coco_keypoints():
    # From: https://github.com/facebookresearch/Detectron/blob/main/detectron/utils/keypoints.py
    keypoints = [
        'nose',
        'left_eye',
        'right_eye',
        'left_ear',
        'right_ear',
        'left_shoulder',
        'right_shoulder',
        'left_elbow',
        'right_elbow',
        'left_wrist',
        'right_wrist',
        'left_hip',
        'right_hip',
        'left_knee',
        'right_knee',
        'left_ankle',
        'right_ankle'
    ]
    keypoint_flip_map = {
        'left_eye': 'right_eye',
        'left_ear': 'right_ear',
        'left_shoulder': 'right_shoulder',
        'left_elbow': 'right_elbow',
        'left_wrist': 'right_wrist',
        'left_hip': 'right_hip',
        'left_knee': 'right_knee',
        'left_ankle': 'right_ankle'
    }
    connectivity = {
        "nose": "left_eye",
        "left_eye": "right_eye",
        "right_eye": "nose",
        "left_ear": "left_eye",
        "right_ear": "right_eye",
        "left_shoulder": "nose",
        "right_shoulder": "nose",
        "left_elbow": "left_shoulder",
        "right_elbow": "right_shoulder",
        "left_wrist": "left_elbow",
        "right_wrist": "right_elbow",
        "left_hip": "left_shoulder",
        "right_hip": "right_shoulder",
        "left_knee": "left_hip",
        "right_knee": "right_hip",
        "left_ankle": "left_knee",
        "right_ankle": "right_knee"
    }
    connectivity_indices = [
        (sidx, keypoints.index(connectivity[kp]))
        for sidx, kp in enumerate(keypoints)
    ]
    return keypoints, keypoint_flip_map, connectivity_indices


def get_coco_colors():
    return [
        *["red"]*5,
        "blue",
        "green",
        "blue",
        "green",
        "blue",
        "green",
        "purple",
        "orange",
        "purple",
        "orange",
        "purple",
        "orange",
    ]


@torch.no_grad()
def draw_keypoints(
    image: torch.Tensor,
    keypoints: torch.Tensor,
    connectivity: Optional[List[Tuple[int, int]]] = None,
    visible: Optional[List[List[bool]]] = None,
    colors: Optional[Union[str, Tuple[int, int, int]]] = None,
    radius: int = None,
    width: int = None,
) -> torch.Tensor:
    """
    Function taken from torchvision source code.  Added in torchvision 0.12

    Draws Keypoints on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        keypoints (Tensor): Tensor of shape (num_instances, K, 2) the K keypoints location for each of the N instances,
            in the format [x, y].
        connectivity (List[Tuple[int, int]]]): A List of tuple where,
            each tuple contains pair of keypoints to be connected.
        colors (str, Tuple): The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
        radius (int): Integer denoting radius of keypoint.
        width (int): Integer denoting width of line connecting keypoints.

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with keypoints drawn.
    """

    if not isinstance(image, torch.Tensor):
        raise TypeError(f"The image must be a tensor, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")

    if keypoints.ndim != 3:
        raise ValueError("keypoints must be of shape (num_instances, K, 2)")
    if width is None:
        width = int(max(max(image.shape[-2:]) * 0.01, 1))
    if radius is None:
        radius = int(max(max(image.shape[-2:]) * 0.01, 1))

    ndarr = image.permute(1, 2, 0).cpu().numpy()
    img_to_draw = Image.fromarray(ndarr)
    draw = ImageDraw.Draw(img_to_draw)
    if isinstance(keypoints, torch.Tensor):
        img_kpts = keypoints.to(torch.int64).tolist()
    else:
        assert isinstance(keypoints, np.ndarray)
        img_kpts = keypoints.astype(int).tolist()
    colors = get_coco_colors()
    for inst_id, kpt_inst in enumerate(img_kpts):

        for kpt_id, kpt in enumerate(kpt_inst):
            if visible is not None and int(visible[inst_id][kpt_id]) == 0:
                continue
            x1 = kpt[0] - radius
            x2 = kpt[0] + radius
            y1 = kpt[1] - radius
            y2 = kpt[1] + radius

            draw.ellipse([x1, y1, x2, y2], fill=colors[kpt_id], outline=None, width=0)

        if connectivity is not None:
            for connection in connectivity:
                if connection[1] >= len(kpt_inst) or connection[0] >= len(kpt_inst):
                    continue
                if visible is not None and int(visible[inst_id][connection[1]]) == 0 or int(visible[inst_id][connection[0]]) == 0:
                    continue

                start_pt_x = kpt_inst[connection[0]][0]
                start_pt_y = kpt_inst[connection[0]][1]

                end_pt_x = kpt_inst[connection[1]][0]
                end_pt_y = kpt_inst[connection[1]][1]

                draw.line(
                    ((start_pt_x, start_pt_y), (end_pt_x, end_pt_y)),
                    width=width, fill=colors[connection[1]]
                )

    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)


def visualize_keypoints(img, keypoints):
    img = img.clone()
    keypoints = keypoints.clone()
    keypoints[:, :, 0] *= img.shape[-1]
    keypoints[:, :, 1] *= img.shape[-2]
    _, _, connectivity = get_coco_keypoints()
    connectivity = np.array(connectivity)
    visible = None
    if keypoints.shape[-1] == 3:
        visible = keypoints[:, :, 2] > 0
    for idx in range(img.shape[0]):
        img[idx] = draw_keypoints(
            img[idx], keypoints[idx:idx+1].long(), colors="red",
            connectivity=connectivity, visible=visible[idx:idx+1])
    return img


def visualize_batch(
        img: torch.Tensor, mask: torch.Tensor,
        vertices: torch.Tensor = None,
        E_mask: torch.Tensor = None,
        embed_map: torch.Tensor = None,
        semantic_mask: torch.Tensor = None,
        embedding: torch.Tensor = None,
        keypoints: torch.Tensor = None,
        maskrcnn_mask: torch.Tensor = None,
        **kwargs) -> torch.ByteTensor:
    img = denormalize_img(img).mul(255).round().clamp(0, 255).byte()
    img = draw_mask(img, mask)
    if maskrcnn_mask is not None and maskrcnn_mask.shape == mask.shape:
        img = draw_mask(img, maskrcnn_mask)
    if vertices is not None or embedding is not None:
        assert E_mask is not None
        assert embed_map is not None
        img, E_mask, embedding, embed_map, vertices = tops.to_cpu([
            img, E_mask, embedding, embed_map, vertices
        ])
        img = draw_cse(img, E_mask, embedding, embed_map, vertices)
    elif semantic_mask is not None:
        img = draw_segmentation_masks(img, semantic_mask)
    if keypoints is not None:
        img = visualize_keypoints(img, keypoints)
    return img


@torch.no_grad()
def draw_cse(
        img: torch.Tensor, E_seg: torch.Tensor,
        embedding: torch.Tensor = None,
        embed_map: torch.Tensor = None,
        vertices: torch.Tensor = None, t=0.7
):
    """
        E_seg: 1 for areas with embedding
    """
    assert img.dtype == torch.uint8
    img = img.view(-1, *img.shape[-3:])
    E_seg = E_seg.view(-1, 1, *E_seg.shape[-2:])
    if vertices is None:
        assert embedding is not None
        assert embed_map is not None
        embedding = embedding.view(-1, *embedding.shape[-3:])
        vertices = torch.stack(
            [from_E_to_vertex(e[None], e_seg[None].logical_not().float(), embed_map)
             for e, e_seg in zip(embedding, E_seg)])

    i = np.arange(0, 256, dtype=np.uint8).reshape(1, -1)
    colormap_JET = torch.from_numpy(cv2.applyColorMap(i, cv2.COLORMAP_JET)[0])
    color_embed_map, _ = np.load(download_file(
        "https://dl.fbaipublicfiles.com/densepose/data/cse/mds_d=256.npy"), allow_pickle=True)
    color_embed_map = torch.from_numpy(color_embed_map).float()[:, 0]
    color_embed_map -= color_embed_map.min()
    color_embed_map /= color_embed_map.max()
    vertx2idx = (color_embed_map*255).long()
    vertx2colormap = colormap_JET[vertx2idx]

    vertices = vertices.view(-1, *vertices.shape[-2:])
    E_seg = E_seg.view(-1, 1, *E_seg.shape[-2:])
    # This operation might be good to do on cpu...

    E_color = vertx2colormap[vertices.long()]
    E_color = E_color.to(E_seg.device)
    E_color = E_color.permute(0, 3, 1, 2)
    E_color = E_color*E_seg.byte()

    m = E_seg.bool().repeat(1, 3, 1, 1)
    img[m] = (img[m] * (1-t) + t * E_color[m]).byte()
    return img


def draw_cse_all(
        embedding: List[torch.Tensor], E_mask: List[torch.Tensor],
        im: torch.Tensor, boxes_XYXY: list, embed_map: torch.Tensor, t=0.7):
    """
        E_seg: 1 for areas with embedding
    """
    assert len(im.shape) == 3, im.shape
    assert im.dtype == torch.uint8

    N = len(E_mask)
    im = im.clone()
    for i in range(N):
        assert len(E_mask[i].shape) == 2
        assert len(embedding[i].shape) == 3
        assert embed_map.shape[1] == embedding[i].shape[0]
        assert len(boxes_XYXY[i]) == 4
        E = embedding[i]
        x0, y0, x1, y1 = boxes_XYXY[i]
        E = F.resize(E, (y1-y0, x1-x0), antialias=True)
        s = E_mask[i].float()
        s = (F.resize(s.squeeze()[None], (y1-y0, x1-x0), antialias=True) > 0).float()
        box = boxes_XYXY[i]

        im_ = crop_box(im, box)
        s = remove_pad(s, box, im.shape[1:])
        E = remove_pad(E, box, im.shape[1:])
        E_color = draw_cse(img=im_, E_seg=s[None], embedding=E[None], embed_map=embed_map)[0]
        E_color = E_color.to(im.device)
        s = s.bool().repeat(3, 1, 1)
        crop_box(im, box)[s] = (im_[s] * (1-t) + t * E_color[s]).byte()
    return im


@torch.no_grad()
def draw_segmentation_masks(
    image: torch.Tensor,
    masks: torch.Tensor,
    alpha: float = 0.8,
    colors: Optional[List[Union[str, Tuple[int, int, int]]]] = None,
) -> torch.Tensor:
    """
    Draws segmentation masks on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
        alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
            0 means full transparency, 1 means no transparency.
        colors (list or None): List containing the colors of the masks. The colors can
            be represented as PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
            When ``masks`` has a single entry of shape (H, W), you can pass a single color instead of a list
            with one element. By default, random colors are generated for each mask.

    Returns:
        img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
    """

    if not isinstance(image, torch.Tensor):
        raise TypeError(f"The image must be a tensor, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")
    if masks.ndim == 2:
        masks = masks[None, :, :]
    if masks.ndim != 3:
        raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
    if masks.dtype != torch.bool:
        raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
    if masks.shape[-2:] != image.shape[-2:]:
        raise ValueError("The image and the masks must have the same height and width")
    num_masks = masks.size()[0]
    if num_masks == 0:
        return image
    if colors is None:
        colors = _generate_color_palette(num_masks)
    if not isinstance(colors[0], (Tuple, List)):
        colors = [colors for i in range(num_masks)]
    if colors is not None and num_masks > len(colors):
        raise ValueError(f"There are more masks ({num_masks}) than colors ({len(colors)})")

    if not isinstance(colors, list):
        colors = [colors]
    if not isinstance(colors[0], (tuple, str)):
        raise ValueError("colors must be a tuple or a string, or a list thereof")
    if isinstance(colors[0], tuple) and len(colors[0]) != 3:
        raise ValueError("It seems that you passed a tuple of colors instead of a list of colors")

    out_dtype = torch.uint8

    colors_ = []
    for color in colors:
        if isinstance(color, str):
            color = ImageColor.getrgb(color)
        color = torch.tensor(color, dtype=out_dtype, device=masks.device)
        colors_.append(color)
    img_to_draw = image.detach().clone()
    # TODO: There might be a way to vectorize this
    for mask, color in zip(masks, colors_):
        img_to_draw[:, mask] = color[:, None]

    out = image * (1 - alpha) + img_to_draw * alpha
    return out.to(out_dtype)


def draw_mask(im: torch.Tensor, mask: torch.Tensor, t=0.2, color=(255, 255, 255), visualize_instances=True):
    """
        Visualize mask where mask = 0.
        Supports multiple instances.
        mask shape: [N, C, H, W], where C is different instances in same image.
    """
    orig_imshape = im.shape
    if mask.numel() == 0:
        return im
    assert len(mask.shape) in (3, 4), mask.shape
    mask = mask.view(-1, *mask.shape[-3:])
    im = im.view(-1, *im.shape[-3:])
    assert im.dtype == torch.uint8, im.dtype
    assert 0 <= t <= 1
    if not visualize_instances:
        mask = mask.any(dim=1, keepdim=True)
    mask = mask.bool()
    kernel = torch.ones((3, 3), dtype=mask.dtype, device=mask.device)
    outer_border = binary_dilation(mask, kernel).logical_xor(mask)
    outer_border = outer_border.any(dim=1, keepdim=True).repeat(1, 3, 1, 1) > 0
    inner_border = binary_erosion(mask, kernel).logical_xor(mask)
    inner_border = inner_border.any(dim=1, keepdim=True).repeat(1, 3, 1, 1) > 0
    mask = (mask == 0).any(dim=1, keepdim=True).repeat(1, 3, 1, 1)
    color = torch.tensor(color).to(im.device).byte().view(1, 3, 1, 1)  # .repeat(1, *im.shape[1:])
    color = color.repeat(im.shape[0], 1, *im.shape[-2:])
    im[mask] = (im[mask] * (1-t) + t * color[mask]).byte()
    im[outer_border] = 255
    im[inner_border] = 0
    return im.view(*orig_imshape)


def draw_cropped_masks(im: torch.Tensor, mask: torch.Tensor, boxes: torch.Tensor, **kwargs):
    for i, box in enumerate(boxes):
        x0, y0, x1, y1 = boxes[i]
        orig_shape = (y1-y0, x1-x0)
        m = F.resize(mask[i], orig_shape, F.InterpolationMode.NEAREST).squeeze()[None]
        m = remove_pad(m, boxes[i], im.shape[-2:])
        crop_box(im, boxes[i]).set_(draw_mask(crop_box(im, boxes[i]), m))
    return im


def draw_cropped_keypoints(im: torch.Tensor, all_keypoints: torch.Tensor, boxes: torch.Tensor, **kwargs):
    n_boxes = boxes.shape[0]
    tops.assert_shape(all_keypoints, (n_boxes, 17, 3))
    im = im.clone()
    for i, box in enumerate(boxes):

        x0, y0, x1, y1 = boxes[i]
        orig_shape = (y1-y0, x1-x0)
        keypoints = all_keypoints[i].clone()
        keypoints[:, 0] *= orig_shape[1]
        keypoints[:, 1] *= orig_shape[0]
        keypoints = keypoints.long()
        _, _, connectivity = get_coco_keypoints()
        connectivity = np.array(connectivity)
        visible = (keypoints[:, 2] > .5)
        # Remove padding from keypoints before visualization
        keypoints[:, 0] += min(x0, 0)
        keypoints[:, 1] += min(y0, 0)
        im_with_kp = draw_keypoints(
            crop_box(im, box), keypoints[None], colors="red", connectivity=connectivity, visible=visible[None])
        crop_box(im, box).copy_(im_with_kp)
    return im