Spaces:
Runtime error
Runtime error
File size: 16,577 Bytes
97a6728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import torch
import tops
import cv2
import torchvision.transforms.functional as F
from typing import Optional, List, Union, Tuple
from .cse import from_E_to_vertex
import numpy as np
from tops import download_file
from .torch_utils import (
denormalize_img, binary_dilation, binary_erosion,
remove_pad, crop_box)
from torchvision.utils import _generate_color_palette
from PIL import Image, ImageColor, ImageDraw
def get_coco_keypoints():
# From: https://github.com/facebookresearch/Detectron/blob/main/detectron/utils/keypoints.py
keypoints = [
'nose',
'left_eye',
'right_eye',
'left_ear',
'right_ear',
'left_shoulder',
'right_shoulder',
'left_elbow',
'right_elbow',
'left_wrist',
'right_wrist',
'left_hip',
'right_hip',
'left_knee',
'right_knee',
'left_ankle',
'right_ankle'
]
keypoint_flip_map = {
'left_eye': 'right_eye',
'left_ear': 'right_ear',
'left_shoulder': 'right_shoulder',
'left_elbow': 'right_elbow',
'left_wrist': 'right_wrist',
'left_hip': 'right_hip',
'left_knee': 'right_knee',
'left_ankle': 'right_ankle'
}
connectivity = {
"nose": "left_eye",
"left_eye": "right_eye",
"right_eye": "nose",
"left_ear": "left_eye",
"right_ear": "right_eye",
"left_shoulder": "nose",
"right_shoulder": "nose",
"left_elbow": "left_shoulder",
"right_elbow": "right_shoulder",
"left_wrist": "left_elbow",
"right_wrist": "right_elbow",
"left_hip": "left_shoulder",
"right_hip": "right_shoulder",
"left_knee": "left_hip",
"right_knee": "right_hip",
"left_ankle": "left_knee",
"right_ankle": "right_knee"
}
connectivity_indices = [
(sidx, keypoints.index(connectivity[kp]))
for sidx, kp in enumerate(keypoints)
]
return keypoints, keypoint_flip_map, connectivity_indices
def get_coco_colors():
return [
*["red"]*5,
"blue",
"green",
"blue",
"green",
"blue",
"green",
"purple",
"orange",
"purple",
"orange",
"purple",
"orange",
]
@torch.no_grad()
def draw_keypoints(
image: torch.Tensor,
keypoints: torch.Tensor,
connectivity: Optional[List[Tuple[int, int]]] = None,
visible: Optional[List[List[bool]]] = None,
colors: Optional[Union[str, Tuple[int, int, int]]] = None,
radius: int = None,
width: int = None,
) -> torch.Tensor:
"""
Function taken from torchvision source code. Added in torchvision 0.12
Draws Keypoints on given RGB image.
The values of the input image should be uint8 between 0 and 255.
Args:
image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
keypoints (Tensor): Tensor of shape (num_instances, K, 2) the K keypoints location for each of the N instances,
in the format [x, y].
connectivity (List[Tuple[int, int]]]): A List of tuple where,
each tuple contains pair of keypoints to be connected.
colors (str, Tuple): The color can be represented as
PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
radius (int): Integer denoting radius of keypoint.
width (int): Integer denoting width of line connecting keypoints.
Returns:
img (Tensor[C, H, W]): Image Tensor of dtype uint8 with keypoints drawn.
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f"The image must be a tensor, got {type(image)}")
elif image.dtype != torch.uint8:
raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
elif image.dim() != 3:
raise ValueError("Pass individual images, not batches")
elif image.size()[0] != 3:
raise ValueError("Pass an RGB image. Other Image formats are not supported")
if keypoints.ndim != 3:
raise ValueError("keypoints must be of shape (num_instances, K, 2)")
if width is None:
width = int(max(max(image.shape[-2:]) * 0.01, 1))
if radius is None:
radius = int(max(max(image.shape[-2:]) * 0.01, 1))
ndarr = image.permute(1, 2, 0).cpu().numpy()
img_to_draw = Image.fromarray(ndarr)
draw = ImageDraw.Draw(img_to_draw)
if isinstance(keypoints, torch.Tensor):
img_kpts = keypoints.to(torch.int64).tolist()
else:
assert isinstance(keypoints, np.ndarray)
img_kpts = keypoints.astype(int).tolist()
colors = get_coco_colors()
for inst_id, kpt_inst in enumerate(img_kpts):
for kpt_id, kpt in enumerate(kpt_inst):
if visible is not None and int(visible[inst_id][kpt_id]) == 0:
continue
x1 = kpt[0] - radius
x2 = kpt[0] + radius
y1 = kpt[1] - radius
y2 = kpt[1] + radius
draw.ellipse([x1, y1, x2, y2], fill=colors[kpt_id], outline=None, width=0)
if connectivity is not None:
for connection in connectivity:
if connection[1] >= len(kpt_inst) or connection[0] >= len(kpt_inst):
continue
if visible is not None and int(visible[inst_id][connection[1]]) == 0 or int(visible[inst_id][connection[0]]) == 0:
continue
start_pt_x = kpt_inst[connection[0]][0]
start_pt_y = kpt_inst[connection[0]][1]
end_pt_x = kpt_inst[connection[1]][0]
end_pt_y = kpt_inst[connection[1]][1]
draw.line(
((start_pt_x, start_pt_y), (end_pt_x, end_pt_y)),
width=width, fill=colors[connection[1]]
)
return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
def visualize_keypoints(img, keypoints):
img = img.clone()
keypoints = keypoints.clone()
keypoints[:, :, 0] *= img.shape[-1]
keypoints[:, :, 1] *= img.shape[-2]
_, _, connectivity = get_coco_keypoints()
connectivity = np.array(connectivity)
visible = None
if keypoints.shape[-1] == 3:
visible = keypoints[:, :, 2] > 0
for idx in range(img.shape[0]):
img[idx] = draw_keypoints(
img[idx], keypoints[idx:idx+1].long(), colors="red",
connectivity=connectivity, visible=visible[idx:idx+1])
return img
def visualize_batch(
img: torch.Tensor, mask: torch.Tensor,
vertices: torch.Tensor = None,
E_mask: torch.Tensor = None,
embed_map: torch.Tensor = None,
semantic_mask: torch.Tensor = None,
embedding: torch.Tensor = None,
keypoints: torch.Tensor = None,
maskrcnn_mask: torch.Tensor = None,
**kwargs) -> torch.ByteTensor:
img = denormalize_img(img).mul(255).round().clamp(0, 255).byte()
img = draw_mask(img, mask)
if maskrcnn_mask is not None and maskrcnn_mask.shape == mask.shape:
img = draw_mask(img, maskrcnn_mask)
if vertices is not None or embedding is not None:
assert E_mask is not None
assert embed_map is not None
img, E_mask, embedding, embed_map, vertices = tops.to_cpu([
img, E_mask, embedding, embed_map, vertices
])
img = draw_cse(img, E_mask, embedding, embed_map, vertices)
elif semantic_mask is not None:
img = draw_segmentation_masks(img, semantic_mask)
if keypoints is not None:
img = visualize_keypoints(img, keypoints)
return img
@torch.no_grad()
def draw_cse(
img: torch.Tensor, E_seg: torch.Tensor,
embedding: torch.Tensor = None,
embed_map: torch.Tensor = None,
vertices: torch.Tensor = None, t=0.7
):
"""
E_seg: 1 for areas with embedding
"""
assert img.dtype == torch.uint8
img = img.view(-1, *img.shape[-3:])
E_seg = E_seg.view(-1, 1, *E_seg.shape[-2:])
if vertices is None:
assert embedding is not None
assert embed_map is not None
embedding = embedding.view(-1, *embedding.shape[-3:])
vertices = torch.stack(
[from_E_to_vertex(e[None], e_seg[None].logical_not().float(), embed_map)
for e, e_seg in zip(embedding, E_seg)])
i = np.arange(0, 256, dtype=np.uint8).reshape(1, -1)
colormap_JET = torch.from_numpy(cv2.applyColorMap(i, cv2.COLORMAP_JET)[0])
color_embed_map, _ = np.load(download_file(
"https://dl.fbaipublicfiles.com/densepose/data/cse/mds_d=256.npy"), allow_pickle=True)
color_embed_map = torch.from_numpy(color_embed_map).float()[:, 0]
color_embed_map -= color_embed_map.min()
color_embed_map /= color_embed_map.max()
vertx2idx = (color_embed_map*255).long()
vertx2colormap = colormap_JET[vertx2idx]
vertices = vertices.view(-1, *vertices.shape[-2:])
E_seg = E_seg.view(-1, 1, *E_seg.shape[-2:])
# This operation might be good to do on cpu...
E_color = vertx2colormap[vertices.long()]
E_color = E_color.to(E_seg.device)
E_color = E_color.permute(0, 3, 1, 2)
E_color = E_color*E_seg.byte()
m = E_seg.bool().repeat(1, 3, 1, 1)
img[m] = (img[m] * (1-t) + t * E_color[m]).byte()
return img
def draw_cse_all(
embedding: List[torch.Tensor], E_mask: List[torch.Tensor],
im: torch.Tensor, boxes_XYXY: list, embed_map: torch.Tensor, t=0.7):
"""
E_seg: 1 for areas with embedding
"""
assert len(im.shape) == 3, im.shape
assert im.dtype == torch.uint8
N = len(E_mask)
im = im.clone()
for i in range(N):
assert len(E_mask[i].shape) == 2
assert len(embedding[i].shape) == 3
assert embed_map.shape[1] == embedding[i].shape[0]
assert len(boxes_XYXY[i]) == 4
E = embedding[i]
x0, y0, x1, y1 = boxes_XYXY[i]
E = F.resize(E, (y1-y0, x1-x0), antialias=True)
s = E_mask[i].float()
s = (F.resize(s.squeeze()[None], (y1-y0, x1-x0), antialias=True) > 0).float()
box = boxes_XYXY[i]
im_ = crop_box(im, box)
s = remove_pad(s, box, im.shape[1:])
E = remove_pad(E, box, im.shape[1:])
E_color = draw_cse(img=im_, E_seg=s[None], embedding=E[None], embed_map=embed_map)[0]
E_color = E_color.to(im.device)
s = s.bool().repeat(3, 1, 1)
crop_box(im, box)[s] = (im_[s] * (1-t) + t * E_color[s]).byte()
return im
@torch.no_grad()
def draw_segmentation_masks(
image: torch.Tensor,
masks: torch.Tensor,
alpha: float = 0.8,
colors: Optional[List[Union[str, Tuple[int, int, int]]]] = None,
) -> torch.Tensor:
"""
Draws segmentation masks on given RGB image.
The values of the input image should be uint8 between 0 and 255.
Args:
image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
0 means full transparency, 1 means no transparency.
colors (list or None): List containing the colors of the masks. The colors can
be represented as PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
When ``masks`` has a single entry of shape (H, W), you can pass a single color instead of a list
with one element. By default, random colors are generated for each mask.
Returns:
img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
"""
if not isinstance(image, torch.Tensor):
raise TypeError(f"The image must be a tensor, got {type(image)}")
elif image.dtype != torch.uint8:
raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
elif image.dim() != 3:
raise ValueError("Pass individual images, not batches")
elif image.size()[0] != 3:
raise ValueError("Pass an RGB image. Other Image formats are not supported")
if masks.ndim == 2:
masks = masks[None, :, :]
if masks.ndim != 3:
raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
if masks.dtype != torch.bool:
raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
if masks.shape[-2:] != image.shape[-2:]:
raise ValueError("The image and the masks must have the same height and width")
num_masks = masks.size()[0]
if num_masks == 0:
return image
if colors is None:
colors = _generate_color_palette(num_masks)
if not isinstance(colors[0], (Tuple, List)):
colors = [colors for i in range(num_masks)]
if colors is not None and num_masks > len(colors):
raise ValueError(f"There are more masks ({num_masks}) than colors ({len(colors)})")
if not isinstance(colors, list):
colors = [colors]
if not isinstance(colors[0], (tuple, str)):
raise ValueError("colors must be a tuple or a string, or a list thereof")
if isinstance(colors[0], tuple) and len(colors[0]) != 3:
raise ValueError("It seems that you passed a tuple of colors instead of a list of colors")
out_dtype = torch.uint8
colors_ = []
for color in colors:
if isinstance(color, str):
color = ImageColor.getrgb(color)
color = torch.tensor(color, dtype=out_dtype, device=masks.device)
colors_.append(color)
img_to_draw = image.detach().clone()
# TODO: There might be a way to vectorize this
for mask, color in zip(masks, colors_):
img_to_draw[:, mask] = color[:, None]
out = image * (1 - alpha) + img_to_draw * alpha
return out.to(out_dtype)
def draw_mask(im: torch.Tensor, mask: torch.Tensor, t=0.2, color=(255, 255, 255), visualize_instances=True):
"""
Visualize mask where mask = 0.
Supports multiple instances.
mask shape: [N, C, H, W], where C is different instances in same image.
"""
orig_imshape = im.shape
if mask.numel() == 0:
return im
assert len(mask.shape) in (3, 4), mask.shape
mask = mask.view(-1, *mask.shape[-3:])
im = im.view(-1, *im.shape[-3:])
assert im.dtype == torch.uint8, im.dtype
assert 0 <= t <= 1
if not visualize_instances:
mask = mask.any(dim=1, keepdim=True)
mask = mask.bool()
kernel = torch.ones((3, 3), dtype=mask.dtype, device=mask.device)
outer_border = binary_dilation(mask, kernel).logical_xor(mask)
outer_border = outer_border.any(dim=1, keepdim=True).repeat(1, 3, 1, 1) > 0
inner_border = binary_erosion(mask, kernel).logical_xor(mask)
inner_border = inner_border.any(dim=1, keepdim=True).repeat(1, 3, 1, 1) > 0
mask = (mask == 0).any(dim=1, keepdim=True).repeat(1, 3, 1, 1)
color = torch.tensor(color).to(im.device).byte().view(1, 3, 1, 1) # .repeat(1, *im.shape[1:])
color = color.repeat(im.shape[0], 1, *im.shape[-2:])
im[mask] = (im[mask] * (1-t) + t * color[mask]).byte()
im[outer_border] = 255
im[inner_border] = 0
return im.view(*orig_imshape)
def draw_cropped_masks(im: torch.Tensor, mask: torch.Tensor, boxes: torch.Tensor, **kwargs):
for i, box in enumerate(boxes):
x0, y0, x1, y1 = boxes[i]
orig_shape = (y1-y0, x1-x0)
m = F.resize(mask[i], orig_shape, F.InterpolationMode.NEAREST).squeeze()[None]
m = remove_pad(m, boxes[i], im.shape[-2:])
crop_box(im, boxes[i]).set_(draw_mask(crop_box(im, boxes[i]), m))
return im
def draw_cropped_keypoints(im: torch.Tensor, all_keypoints: torch.Tensor, boxes: torch.Tensor, **kwargs):
n_boxes = boxes.shape[0]
tops.assert_shape(all_keypoints, (n_boxes, 17, 3))
im = im.clone()
for i, box in enumerate(boxes):
x0, y0, x1, y1 = boxes[i]
orig_shape = (y1-y0, x1-x0)
keypoints = all_keypoints[i].clone()
keypoints[:, 0] *= orig_shape[1]
keypoints[:, 1] *= orig_shape[0]
keypoints = keypoints.long()
_, _, connectivity = get_coco_keypoints()
connectivity = np.array(connectivity)
visible = (keypoints[:, 2] > .5)
# Remove padding from keypoints before visualization
keypoints[:, 0] += min(x0, 0)
keypoints[:, 1] += min(y0, 0)
im_with_kp = draw_keypoints(
crop_box(im, box), keypoints[None], colors="red", connectivity=connectivity, visible=visible[None])
crop_box(im, box).copy_(im_with_kp)
return im
|